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INFORMATION FLOW ON NETWORKS
Paulo Almeida, Pedro Duarte, Joana Gonçalves-Sá, Lília Perfeito

NETWORKS



https://lakesidetheatre.org.uk/events/pil-opinion-dynamics-in-social-networks/

Questions
● Can we estimate the fitness of a tweet?
● What is the contribution of the network?
● What is the contribution of individual 

heterogeneity?
● Why do some tweets spread further than 

others?

Data:
 Tweets and user profiles 

(from Twitter API)
 Feed into database (being 

built)
 Group tweets by content 

(cascades)

NETWORKS



Tools:
● Model process:

 Analytical model - diffusion, population dynamics, epidemiological, etc.
 Simulations

● Fit observations and compare parameters
● Estimate the effect of different features of tweets, network and users

NETWORKS



INDIVIDUAL CHARACTERISTICS THAT 
PROMOTE “DISEASE” SUSCEPTIBILITY
Frederico Francisco (former member), Joana Gonçalves-Sá, Simone Lackner 
(former member), Cristina Mendonça, Ângela Rijo

HUMANS



Individual susceptibility
Question:
What individual characteristics 

explain irrational judgment and 
behavior (e.g., fake news 
sharing)?

Objectives:
a. Identify individual 

characteristics that influence 
negative judgment / behavior.

b. Test whether individual 
characteristics improve our 
“spread” models.

UNESCO's World Trends Report

HUMANS

https://unesdoc.unesco.org/ark:/48223/pf0000261065_eng
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DYNAMICS OF NON-INFLUENZA 
RESPIRATORY VIRUSES (NIRVS)

João Loureiro, Sara Mesquita, Lília Perfeito, João Oliveira Eleonora Tulumello,  Irma Varela-Lashe

HEALTH



General Objectives:
a. Identify different epidemic dynamics.
b. Model dynamics:

■Estimate the effect of weather or 
vaccination.

c. Test whether different dynamics lead to 
 differences in reported symptoms.

d. Improve  nowcasting models for the flu-
NIRVs season

Flu season & respi

INSA National flu surveillance program. Season 2018/2019

HEALTH

irma varela
The plot with English names is still missing. If you cannot find it, Joana, I can easily do it before monday



USING ONLINE BEHAVIOUR TO TRACK 
DISEASES

David Almeida, Joao Loureiro, Sara Mesquita, Lília Perfeito, Cláudio Haupt Vieira

HEALTH



2009 Flu Pandemic - USA

Google searches for “flu” might be driven more by the media than by 
the disease.

HEALTH



2009 Flu Pandemic 

Covid-19 Pandemic 

HEALTH



DISINFORMATION, TRACKING, AND 
BEHAVIORAL TARGETING

Íris Damião, Joana Gonçalves-Sá, and José Reis

FAKE NEWS



General Objective:
a. Identify disinformation articles 

from known fact checkers
b. Measure tracking and third-

party content in disinformation 
websites

c. Test whether differential 
tracking and content targeting:

● Ads
● Search engine results 

FAKE NEWS

Studying differential tracking as a 
possible spreading mechanism



FAKE NEWS

Online tracking by setting cookies



FAKE NEWS

Online tracking via fingerprinting



FAKE NEWS

Rationale 1: profitability of 
disinfo



FAKE NEWS

Differential Tracking in US Hyper-Partisan Domains,
Agarwal et al. (2020)

Rationale 2: partisanship/topic 
and tracking



FAKE NEWS

Hussein et al (2020), Measuring Misinformation in 
Video Search Platforms: An Audit Study on 
YouTube

Rationale 3: recommender 
systems



FAKE NEWS

WWW.FAKE.
COM

 
WWW.THEP
OST.COM

 

≠
Is third-party 
tracking different in 
disinformation 
websites? 

≠
Are results different 
for disinformation 
consumers? 

A)

B)

Research questions

http://FAKE.COM/
http://FAKE.COM/
http://FAKE.COM/
http://FAKE.COM/


FAKE NEWS

FARE_AUDIT PoC



FAKE NEWS



FAKE NEWS

Brazilian elections pilot 
experiment
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FAKE NEWS

Stateless vs. Stateless 
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FAKE NEWS

Tracking Audit Pilot

● 500 disinformation 
websites v. 500 
control websites

● Same geo-location
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FAKE NEWS

● While there seems to be more tracking in disinformation 
websites

● Disinformation/non-disinformation websites seem to be 
tracked by similar entities



FAKE NEWS

Thanks for listening!
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