

Detector and Physics simulations

Pamela Teubig NUC-RIA and Dosimetry

Background cover: Simulation theory by Muse

What is a detector?

Detectors

What is a detector?

Detectors

What is a detector?

Detectors

What are the application area?

Simulation - what is it?

simulation

/sımjuːˈleɪʃ(ə)n/

noun

imitation of a situation or process. "simulation of blood flowing through arteries and veins"

- the action of pretending; deception.
 "clever simulation that's good enough to trick you"
- the production of a computer model of something, especially for the purpose of study. "the method was tested by computer simulation"

horter

Dxtord

English

Dictionary

What do we need?

Introduction to simulation

What do we need?

Introduction to simulation

Essential tool in nuclear and particle physics Function:

- Design new detectors
- Analysis of our data
- Benchmarking
- Development of new analysis tools or optimise analysis
- Simulation of new physics models

General Monte Carlo (MC) Codes exit

Introduction to simulation

MC methods for radiation transport

Random photo of the Monte Carlo casino

http://hotcore.info/kareff-07079.htm

ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions

https://nvlpubs.nist.gov/ nistpubs/Legacy/IR/ nistir4999.pdf

John von Neumann and Stanislaw

Ulam in 1945 (<u>https://library.lanl.gov/cgi-bin/</u> getfile?00326866.pdf)

- Nick Metropolis (1948) converted the style of programming using ENIAC as described by J. v. Neumann
- M. J. Berger and S. M. Seltzer (1963) developed the ETRAN code (coupled electron-photon transport (<u>https://</u> <u>nvlpubs.nist.gov/nistpubs/Legacy/IR/</u> <u>nbsir82-2550.pdf</u>)

Probability density function (pdf)

Introduction to simulation

Sophisticated available MC codes

http://www.fluka.org/fluka.php

https://geant4.web.cern.ch

https://mcnp.lanl.gov

http://pypenelope.sourceforge.net

Detector MC:
Geant,
Fluka
Geant4

Radiation MC:

Fluka,
Penelope
Mars,
Geant4,
MCNP

Signal generation: □ Garfield

https://garfield.web.cern.ch/garfield/

MC codes

Available MC codes

http://www.fluka.org/fluka.php

https://geant4.web.cern.ch

https://mcnp.lanl.gov

http://pypenelope.sourceforge.net

Detector MC:
Geant,
Fluka
Geant4

Radiation MC: □ Fluka, □ Penelope □ Mars, ☑ Geant4, □ MCNP/MCNPX

Signal generation:Garfield

https://garfield.web.cern.ch/garfield/

MC codes

Geant4: simulation of the passage of particles through matter Overview

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science. The three main reference papers for Geant4 are published in Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303 d, IEEE Transactions on Nuclear Science 53 No. 1 (2006) 270-278 d and Nuclear Instruments and Methods in Physics Research A 835 (2016) 186-225 .

Applications

A sampling of applications, technology transfer and other uses of Geant4

Getting started, guides and information for users and developers

Publications

Validation of Geant4, results from experiments and publications

Collaboration

Who we are: collaborating institutions, members, organization and legal https://geant4.web.cern.ch information

Recent developments in GEANT4

S. Chauvie 9 ... H. Yoshida bs, a

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 506, Issue 3, 1 July 2003, Pages 250-303

GEANT4—a simulation toolkit

Geant4 Developments and Applications

J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tomé, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida

10.1109/TNS.2006.869826

10.1016/j.nima.2016.06.125

Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers

Detectors and Associated Equipment

Volume 835, 1 November 2016, Pages 186-225

J. Allison ^{a, b}, K. Amako ^{c, a}, J. Apostolakis ^d, P. Arce ^c, M. Asai ^f, T. Aso ^g, E. Bagli ^h, A. Bagulya ⁱ, S. Banerjee ^j, G.

Barrand ^k, B.R. Beck ¹, A.G. Bogdanov ^m, D. Brandt ⁿ, J.M.C. Brown ^o, H. Burkhardt ^d, Ph. Canal ^j, D. Cano-Ott ¹

^{bj} LIP-Lisboa/IST, Av. Elias Garcia, 14-1, 1000-149 Lisboa, Portugal

Geant4

Simulation can be done...

NOT to scale! JUST a quick idea!

CTN-IST: nuclear reaction line CALIFA @FAIR

ATLAS @ CERN

Simulation

Nuclear reaction line @ CTN-IST

Describe the physical world

Reaction chamber HPGe Detector

Detector Geometry

- Construct all necessary material
- Define shapes/ solids
- Construct and place volumes
 - Define sensitive and nonsensitive volumes
 - Define visual attributes of the detector

Three conceptual layers □ Solid (G4VSolid Class Reference) ▶ shape (simple shapes)

size

Step 1: create the geometrical object

Simulating a small detector

Three conceptual layers

- Solid
 - ▶ shape
 - ▶ size

Logical volume

- daughter physical volume,
- ▶ material,
- sensitivity,
- user limits
 - (e.g.max step length, max number of steps, min kinetic energy left, etc.)

E. Galiana Baldó

Simulating a small detector

Three conceptual layers

Solid Solid	
shape	Step 1:
▶ size	create the
Logical volume	geometrical object
daughter physic	al volume,
▶ material,	
sensitivity,	Step 2:
user limits	Assign properties
Physical volume	
position	
rotation	Step 3: Place in world co-or
	system

Attention: Overlapping and confinement in mother space!

Simulating a small detector

Hadronic, Electromagnetic, and Weak interaction

- Photon:
- Pair production, Compton scattering, photoelectric effect
- All charged particles:
- Ionization / δ-rays, multiple scattering
- Electron / positron
- Bremsstrahlung, annihilation (e⁺)
- Hadron:
- Hadronic interactions

hadrons (elastic, inelastic, capture, fission, radioactive decay, photo- nuclear, lepton-nuclear,...)

Physic list choice

Physics List Guide

The Physics List is one of the three mandatory user classes of the GEANT4 toolkit. In this class all GEANT4 particles and their interaction processes should be instantiated. This class should inherit from the base class G4VUserPhysicsList and should be given to G4RunManager:

G4MTRunManager* runManager = new G4MTRunManager; runManager->SetUserInitialization(physicsList);

There are "packaged" physics lists available

Probably you will be interested in the "reference physics lists"

Option exists to create a customised physics lists (needs to be validated)

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/physicslistguide.html https://geant4.web.cern.ch/node/1731

And many more

Simulating a small detector

Physic list choice: examples

orion

Careful in the

Sics lists

Some Hadronic options:

- "QGS" Quark Gluon String model (>~15 GeV)
- "FTF" FRITIOF String model (> ~5 GeV)
- "BIC" Binary Cascade model (<~10 GeV)
- "BERT" Bertini Cascade model (< ~10 GeV)
- "P" G4Precompound model used for de-excitation
- "HP" High Precision neutron model (< ~20 MeV)

Some EM options:

- No suffix: standard EM i.e. the default G4EmStandardPhysics constructor
- "EMV" G4EmStandardPhysics_option1 CTR: HEP, fast but less precise
- "EMY" G4EmStandardPhysics_option3 CTR: medical, space sci., precise
- "EMZ" G4EmStandardPhysics_option4 CTR: most precise EM physics
- Name decoding: String(s)_Cascade_Neutron_EM
- The complete list of pre-packaged physics list with detailed description can be found in the documentation ("Guide for Physics Lists"):

http://geant4.web.cern.ch/geant4/support/proc_mod_catalog/ physics_lists/referencePL.shtml

Event Generator

Event generators (Gun)
Particle type
Particle kinematics
energy
Direction
Other (charge, polarity)
Number of particles generated per event

G4Ion Table

ASCII file input

Pythia, Fritiof using the Lund fragmentation model

HERWIG, HERWIG ++ is an alternative system

For HEP: https://arxiv.org/pdf/2203.11110.pdf

Simulating a small detector

Hits registration

Event hit Particle type Particle kinematics energy Direction Multiplicity

One event is simulated to the end!

Analysis via

ROOT Data Analysis Framework

Analysing the Simulation results of a small detector

Avoid these pitfalls and be aware

Learn to walk before you run...

- Check the volumes
- Small number of events
- Energy: one step at a time
- Check your out put: Does it make sense?

Detector simulation tools are limited by several factors:

Several factors: Available and known accuracy of measurements utilised and tunes or validation of the physics models Particular x-sections

Computational speed

Analysing the Simulation results of a small detector

Example: Cross section

Cross sections for proton induced high energy γ -ray emission (PIGE) in reaction ¹⁹F(p, $\alpha\gamma$)¹⁶O at incident proton energies between 1.5 and 4 MeV

Nuclear Instruments and Methods in Physics Research B 381 (2016) 110-113

Dr. Pablo Cabanelas Eire, IGFAE (USC)

Analysing the Simulation results of a small detector

Example: background radiation

INTERNSHIP

ROGRAM

Simulation of natural background

Uranium generator

INTERNSHIP ROGRAM

Simulation of natural background

Thorium generator

Simulation of natural background

Example: weighted background radiation

HPGe Energy

²³⁵U (actinium chain) @ 187 keV

Simulation of natural background

Example: background radiation

In the lower end of the energy spectrum:

Cosmic showers have not been included (Geant4 library - Cry)

 Radon: 222Rn may accumulate in close rooms including its daughters (²¹⁶Pb and ²¹⁴Bi)

Analysis of the simulation of natural background

Virtual MC

Introduction to VMC and larger experiments

Simulation re-cycled & multi-purpose

H. Alvarez-Pol, et al. NIMB (2014) 767:453-466.

TDR CALIFA barrel https://fair-center.eu/fileadmin/fair/publications_exp/CALIFA_B ARREL_TDR_web.pdf

Development of prototypesTDR

- Bench marking prototypes (smaller facilities & test beams)
- Understanding the performance and development of models
- Data analysis phase
- Development of algorithms
- Proposal submissions

Introduction to VMC and larger experiments

Bench marking prototypes @ smaller facilities

²⁸Si resonance (14399 keV) was simulated

Introduction to VMC and larger experiments

Success stories

Higgs Boson discovery

Success stories

Higgs Boson discovery

Nobel prize in Physics

Higgs Boson discovery

Specialised packages

GAMOS

Geant4-based architecture for **medicine** orientated simulations

Center for Energy, Environmental and Technological Research

Geant4 extension simulation related to **biochemistry** and **DNA**

https://arxiv.org/pdf/0910.5684.pdf http://geant4-dna.in2p3.fr/ styled-3/styled-8/index.html

Introduction to simulation in medical physics

Specialised packages

INTERNSHIP

ROGRAM

Tool for particle simulation http://www.topasmc.org

NATIONAL CANCER INSTITUTE Informatics Technology for Cancer Research

Development of a Standard Methodology for Online Dose Calculations in Air

simulations

38

Specialised packages

More TOPAS...

Acknowledgements

REPÚBLICA PORTUGUESA

