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How this tutorial will proceed
General idea

▪ I will guide you through some 
concepts using these slides

▪ We will then move on to Google 
Colab where I will guide you through 
a hands-on code-along tutorial to 
explore the concepts

▪ After each coding block, we will split 
the audience into breakout rooms 
(each with a tutor) for Q&A and 
clarifications

Big thanks to the helping tutor Ceu!
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How this tutorial will proceed
outline

▪ Part I: What is Machine Learning?
○ Linear Regressions, Decision Trees, Evaluation Metrics

▪ Part II: Ensembles and Neural Networks
○ Forests, Deep Learning, Standardization, Regularization, 

Hyperparameters
▪ Part III: pp collisions dataset



               1 - What is Machine 
Learning?
From an Artificial Intelligence Perspective



Classical 
Programming

Machine 
Learning

Rules Answers

RulesAnswers
Answers

New

= Decision 
Function

= Data



In 1996 IBM Deep Blue won Garry 
Kasparov in a six-game match (4-2)

..but it wasn't Machine Learning!



AlphaGo
By DeepMind, Circa 2016

It beat Lee Sedol in a five-game 
match (4-1)



The Game of Go

Possible board configurations?
● Chess - 1046

● Go - 10170 

Number of atoms in the 
observable universe?

1082
There is a movie about it! 



               Machine Learning 
Taxonomy
What is out there and what tasks can 
we solve?



Machine Learning
Taxonomy: Types of Learning



Machine Learning
Taxonomy: Supervised Learning

▪ The training data includes the answer we 
want to reproduce
○
○ X: Independent Variables/Features
○ y: Target Variables/Labels

▪ Assume (hope?) there exists a relation 
such that

▪ The model will approximate f,
▪ The type of y defines two sub-classes

○ y is a real variable: Regression
○ y is categorical: Classification

X y

X y
f

new X ŷ



Regression Example
Linear Regression

x

y



Regression Example
Linear Regression

The Algorithm

1. Let’s start with a guess. Let's say 
w=1 and b=2.

1. Let’s start with a guess. Let's say 
w=1 and b=2.

2. Calculate the gradient of our loss 
function for our parameters.

3. Update the parameters.
4. Go to step 2 and repeat until we’re 

satisfied.



Regression Example
Linear Regression



“This idea of taking small steps in the 
right direction is what is called Gradient 
Descent, and it's the heart of ML.”

15



Classification Example
Logistic Regression Generalization
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Sigmoid function



Classification Example
Decision Tree
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Classification Example
Decision Tree Training

● For each feature, order the points by their values

● Find a value for that feature that maximises purity of a class on each 

side of the split

● Repeat until there are no more splits left -- either all truncations are 

pure in one class or each data point is in its own leaf



Machine Learning
How to evaluate a classifier

● There are many metrics in the Machine Learning literature that help 
you assess the performance of a classifier

● We will be focus on two
○ Accuracy: The percentage of instances that are correctly 

classified
○ Area under ROC (Receiver operator characteristic) curve



Machine Learning
ROC

How good is this model?

Just measure the accuracy! 

If the output of the model is >0.5, then 
the flower bloomed (class 1), 

Otherwise, the flower faded (class 0) .



Machine Learning
ROC

-> They all have the same 
accuracy!

… we need a better metric.



Machine Learning
ROC

True Positive Rate = Sensitivity 
False Positive Rate = 1-Specificity

Confusion Matrix



Machine Learning
ROC

Cheatsheet:

https://en.wikipedia.org/wiki/Receiver_oper
ating_characteristic

p(y=1,x)

TP
R

FPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Google Colab

● An online jupyter notebook host solution where you can do Machine 

Learning in Python

○ https://colab.research.google.com/

○ You do need a Google account

● It has all the relevant packages to do Data Science and Machine 

Learning pre-installed 

● You can use GPU and TPU acceleration, for free

https://colab.research.google.com/


Scikit-Learn
and the python Machine Learning ecosystem

● Scikit-Learn (https://scikit-learn.org/) is the go-to ML package for 

python

● It defined the best practices for ML API development

● Has great documentation and tutorials

● If this tutorial fails to teach you anything… 

learn ML from Scikit-Learn documentation!

https://scikit-learn.org/


Additional Packages
For the python Machine Learning ecosystem

● We will start by implementing a logistic regression and a decision tree

○ sklearn.linear.LogisticRegression

○ sklearn.tree.DecisionTreeClassifier  

● Not estimator modules worth remembering:

○ sklearn.preprocessing

○ sklearn.model_selection

○ sklearn.metrics



1st hands-on
We will use Google Colab to run a 
few examples of classification 
algorithms using Scikit-Learn



               2 - Ensembles and 
Neural Networks
Forests, neurons, and all that jazz



Ensembles
Strength in numbers

● An Ensemble is an… ensemble of ML models 
● The idea is that the many weaker learners perform 

better together and produce a stronger learner



Ensembles
Strength in numbers

● Example: Random Forest is a collection of smaller trees (with a maximum 
depth) trained on subsamples of the data (bootstrapping)
○ The final prediction is given by average of the predictions -> This gives 

better generalisation than using a big tree alone

● Parallel Training
● Strong Predictive Power



Ensembles
Come in different shapes

● Although most of the ensembles techniques are based in Trees as the base 
model, there are many ways of building
○ I already mentioned Forests (a type of Bagging)
○ Another famous class are the Boosted ensembles (e.g. Boosted 

Decision Trees and Gradient Boosted Trees):
■ A sequence of trees that learn progressively more difficult cases
■



Ensembles
They are better than individual models

● Ensembles of Trees are very good baseline models and should be your 

first go-to choice for tabular data (i.e. excels, csv, etc)

● They improve generalisation of the base estimator and reduce the risk 

of overfitting

● They require little to no data preprocessing (when based on Trees), 

making them very attractive as out-of-the-box solutions



Deep Learning is 
a subclass of 
Machine 
Learning 
algorithms that 
train Neural 
Networks to 
perform tasks

Machine Learning

Artificial 
Intelligence

Deep 
Learning



Differentiable models that can be trained 
with Stochastic Gradient Descent

Unmatched representational power and 
are capable of feature abstraction: deeper 
layers abstract more complex relations

Extremely versatile and can take in data of 
many different shapes and formats

All state-of-the-art Machine Learning 
applications are based on Deep Learning 
and implement Neural Networks

Deep Learning and Neural Networks
Terrible name, great idea



● Define how many layers and how 
many units (neurons) are in each layer, 
in addition to the non-linear activation

● Define the output
○ For binary classification: sigmoid

● Define the Loss function
○ For binary classification: binary 

cross-entropy
● Iteratively train on mini-batches of 

data. This is performed by an 
optimisation algorithm (we won’t be 
able to cover these in detail)

Deep Learning and Neural Networks
Defining and training



● Unlike trees, Neural Networks require some preprocessing
● The most common requirement is to standartise the inputs: set mean to 

0 and standard deviation to 1

● The reason for this is that the SGD applies weight updates 
layer-by-layer (chain rule over function composition), and too large 
activations will lead to too large updates => gradient explosion and 
unstable learning (see also vanishing gradients)

● Scikit-Learn is your friend
○ from sklearn.preprocessing import StandardScaler
○ from sklearn.pipeline import make_pipeline

Deep Learning and Neural Networks
Preprocessing: Standartisation



Neural Networks
In python

● Scikit-Learn has a simple implementation of a Neural Network for 

classification (usually called a Multi-Layer Perceptron)

○ from sklearn.neural_network import MLPClassifier

● But we will look into more famous frameworks:



Neural Networks
Are the present and the future

● Neural Networks have unleashed a revolution in Machine Learning 

● Getting them to work requires some work and care, but the outcome is 

usually worth the trouble

● This is by no means a complete introduction, I recommend investing 

some time with documentation of the modules covered and some 

books:

○ 100 Page ML book; Hands On ML With Scikit-Learn, Keras & 

Tensorflow; Deep Learning with PyTorch



Neural Networks
In python using TensorFlow/Keras

● We will use Keras packaged with TensorFlow
● A model is initiated with a Model class. We will use the Sequential

○ It takes a sequence of layers (classes from the layers module)
○ It connects them automatically sequentially
○ model = keras.models.Sequential([

○     keras.layers.Dense(100, activation='relu', input_shape=(2,)),

○     keras.layers.Dense(1, activation='sigmoid')

○    ])
● You then compile to define the Loss function, metrics, and the optimizer

○ model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy', keras.metrics.AUC()])

● Which you can then fit
○ model.fit(X_train, y_train, epochs=100) How SGD is implemented. Adam is 

always a good first choice



Model choice  and Hyperparameter Tuning
Neural Network shape

● How the shape of the network affects 
its performance?
○ The deeper (more hidden layers) 

and wider (number of units) the 
greater is the capacity

● The performance of the Neural 
Network can also be affected by the 
choice of non-linear activation function

● How to choose?
● Is there a risk of using too large a 

network?



Model choice  and Hyper Parameter Tuning
Model Capacity
A model with insufficient capacity will fail to fit f: underfitting.

A model with too much capacity will fit the noise: overfitting.

x

y

x

y

x

y



Regularisation
In practice, one usually 
overestimates the capacity 
needed and then applies 
regularisation to prevent 
overfitting



Model choice  and Hyperparameter Tuning
Regularisation

● Many ways of regularising a ML 
model, which depend on the 
type of algorithm

● One that always helps with 
Neural Networks (and other 
iteration-based training 
algorithms) is early stop
○ Stop training when the 

loss/metric worsens on a 
validation set



Model choice  and Hyperparameter Tuning
Best practices: Three different splits!

● Split the dataset into three sets
○ Train: for fitting
○ Val: for validation
○ Test: to derive the final 

performance
● Never use the Test set at any 

stage of your training or 
validation => Information 
Leakage (a.k.a. cheating)

Full Dataset

Train Validation Test

In our case we want to retain a good 
statistical description of our data

1:1:1



Model choice  and Hyperparameter Tuning
Choosing the final hyperparameters

● Try different combinations of hyperparameters. For each:
○ Train the network with the training set
○ Use the validation set to stop early
○ Measure the metrics on the validation set

● In the end: pick the hyperparameter combination with the best 
validation set metrics

● If you learn how to do this you can become a professional Machine 
Learning engineer in the industry



2nd hands-on
Let’s implement some ensembles 
and neural networks using both 
Scikit-Learn and TensorFlow



               3 - Finding new Physics signals

Because you only learn by doing



Machine Learning in New Physics Analyses
Finding a needle in a particle haystack

● Now that you are proficient Machine Learning engineers, let’s do some 

physics with this!

● The idea is simple:

○ Data come

○ Data might have a signal we want to discover

○ Train a classifier to separate interesting events from the 

background

○ Make a discovery and profit (joking, someone else gets the Noble)



Simulated pp collisions Dataset
https://zenodo.org/record/5126747

● Created in 2021, the dataset is composed of different Beyond the 

standard model events (Signal) and Standard-Model events 

(Background)

● The objective is to isolate as much signal as possible (Classification 

problem)



The pp collisions Dataset
A few words on weights...

● The dataset is simulated (Monte Carlo)
● In order to be sure that we are covering a full description of the 

simulated event we often simulate far more events than those 
expected

● Furthermore, each event has different probabilities of happening 
(given by the cross-section)

● In the end the simulation is composed of different simulated events at 
different rates, and we need to reweight their contribution in order to 
keep the statistical description of the data



3rd hands-on


