
Machine Learning Tutorial

LIP Internship Program
Summer 2023

Miguel Caçador Peixoto
mpeixoto@lip.pt

Based on Miguel Crispim Romão Slides

How this tutorial will proceed
General idea

▪ I will guide you through some
concepts using these slides

▪ We will then move on to Google
Colab where I will guide you through
a hands-on code-along tutorial to
explore the concepts

▪ After each coding block, we will split
the audience into breakout rooms
(each with a tutor) for Q&A and
clarifications

Big thanks to the helping tutor Ceu!

Slides

Code-along

Q&A w/ tutors

Slides

Code-along

Q&A w/ tutors

Slides

Code-along

Q&A w/ tutors

Around 1h

How this tutorial will proceed
outline

▪ Part I: What is Machine Learning?
○ Linear Regressions, Decision Trees, Evaluation Metrics

▪ Part II: Ensembles and Neural Networks
○ Forests, Deep Learning, Standardization, Regularization,

Hyperparameters
▪ Part III: pp collisions dataset

 1 - What is Machine
Learning?
From an Artificial Intelligence Perspective

Classical
Programming

Machine
Learning

Rules Answers

RulesAnswers
Answers

New

= Decision
Function

= Data

In 1996 IBM Deep Blue won Garry
Kasparov in a six-game match (4-2)

..but it wasn't Machine Learning!

AlphaGo
By DeepMind, Circa 2016

It beat Lee Sedol in a five-game
match (4-1)

The Game of Go

Possible board configurations?
● Chess - 1046

● Go - 10170

Number of atoms in the
observable universe?

1082
There is a movie about it!

 Machine Learning
Taxonomy
What is out there and what tasks can
we solve?

Machine Learning
Taxonomy: Types of Learning

Machine Learning
Taxonomy: Supervised Learning

▪ The training data includes the answer we
want to reproduce
○
○ X: Independent Variables/Features
○ y: Target Variables/Labels

▪ Assume (hope?) there exists a relation
such that

▪ The model will approximate f,
▪ The type of y defines two sub-classes

○ y is a real variable: Regression
○ y is categorical: Classification

X y

X y
f

new X ŷ

Regression Example
Linear Regression

x

y

Regression Example
Linear Regression

The Algorithm

1. Let’s start with a guess. Let's say
w=1 and b=2.

1. Let’s start with a guess. Let's say
w=1 and b=2.

2. Calculate the gradient of our loss
function for our parameters.

3. Update the parameters.
4. Go to step 2 and repeat until we’re

satisfied.

Regression Example
Linear Regression

“This idea of taking small steps in the
right direction is what is called Gradient
Descent, and it's the heart of ML.”

15

Classification Example
Logistic Regression Generalization

z

1

0.5

Sigmoid function

Classification Example
Decision Tree

2

x1
5

x2 X1>5

X2>2

Classification Example
Decision Tree Training

● For each feature, order the points by their values

● Find a value for that feature that maximises purity of a class on each

side of the split

● Repeat until there are no more splits left -- either all truncations are

pure in one class or each data point is in its own leaf

Machine Learning
How to evaluate a classifier

● There are many metrics in the Machine Learning literature that help
you assess the performance of a classifier

● We will be focus on two
○ Accuracy: The percentage of instances that are correctly

classified
○ Area under ROC (Receiver operator characteristic) curve

Machine Learning
ROC

How good is this model?

Just measure the accuracy!

If the output of the model is >0.5, then
the flower bloomed (class 1),

Otherwise, the flower faded (class 0) .

Machine Learning
ROC

-> They all have the same
accuracy!

… we need a better metric.

Machine Learning
ROC

True Positive Rate = Sensitivity
False Positive Rate = 1-Specificity

Confusion Matrix

Machine Learning
ROC

Cheatsheet:

https://en.wikipedia.org/wiki/Receiver_oper
ating_characteristic

p(y=1,x)

TP
R

FPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Google Colab

● An online jupyter notebook host solution where you can do Machine

Learning in Python

○ https://colab.research.google.com/

○ You do need a Google account

● It has all the relevant packages to do Data Science and Machine

Learning pre-installed

● You can use GPU and TPU acceleration, for free

https://colab.research.google.com/

Scikit-Learn
and the python Machine Learning ecosystem

● Scikit-Learn (https://scikit-learn.org/) is the go-to ML package for

python

● It defined the best practices for ML API development

● Has great documentation and tutorials

● If this tutorial fails to teach you anything…

learn ML from Scikit-Learn documentation!

https://scikit-learn.org/

Additional Packages
For the python Machine Learning ecosystem

● We will start by implementing a logistic regression and a decision tree

○ sklearn.linear.LogisticRegression

○ sklearn.tree.DecisionTreeClassifier

● Not estimator modules worth remembering:

○ sklearn.preprocessing

○ sklearn.model_selection

○ sklearn.metrics

1st hands-on
We will use Google Colab to run a
few examples of classification
algorithms using Scikit-Learn

 2 - Ensembles and
Neural Networks
Forests, neurons, and all that jazz

Ensembles
Strength in numbers

● An Ensemble is an… ensemble of ML models
● The idea is that the many weaker learners perform

better together and produce a stronger learner

Ensembles
Strength in numbers

● Example: Random Forest is a collection of smaller trees (with a maximum
depth) trained on subsamples of the data (bootstrapping)
○ The final prediction is given by average of the predictions -> This gives

better generalisation than using a big tree alone

● Parallel Training
● Strong Predictive Power

Ensembles
Come in different shapes

● Although most of the ensembles techniques are based in Trees as the base
model, there are many ways of building
○ I already mentioned Forests (a type of Bagging)
○ Another famous class are the Boosted ensembles (e.g. Boosted

Decision Trees and Gradient Boosted Trees):
■ A sequence of trees that learn progressively more difficult cases
■

Ensembles
They are better than individual models

● Ensembles of Trees are very good baseline models and should be your

first go-to choice for tabular data (i.e. excels, csv, etc)

● They improve generalisation of the base estimator and reduce the risk

of overfitting

● They require little to no data preprocessing (when based on Trees),

making them very attractive as out-of-the-box solutions

Deep Learning is
a subclass of
Machine
Learning
algorithms that
train Neural
Networks to
perform tasks

Machine Learning

Artificial
Intelligence

Deep
Learning

Differentiable models that can be trained
with Stochastic Gradient Descent

Unmatched representational power and
are capable of feature abstraction: deeper
layers abstract more complex relations

Extremely versatile and can take in data of
many different shapes and formats

All state-of-the-art Machine Learning
applications are based on Deep Learning
and implement Neural Networks

Deep Learning and Neural Networks
Terrible name, great idea

● Define how many layers and how
many units (neurons) are in each layer,
in addition to the non-linear activation

● Define the output
○ For binary classification: sigmoid

● Define the Loss function
○ For binary classification: binary

cross-entropy
● Iteratively train on mini-batches of

data. This is performed by an
optimisation algorithm (we won’t be
able to cover these in detail)

Deep Learning and Neural Networks
Defining and training

● Unlike trees, Neural Networks require some preprocessing
● The most common requirement is to standartise the inputs: set mean to

0 and standard deviation to 1

● The reason for this is that the SGD applies weight updates
layer-by-layer (chain rule over function composition), and too large
activations will lead to too large updates => gradient explosion and
unstable learning (see also vanishing gradients)

● Scikit-Learn is your friend
○ from sklearn.preprocessing import StandardScaler
○ from sklearn.pipeline import make_pipeline

Deep Learning and Neural Networks
Preprocessing: Standartisation

Neural Networks
In python

● Scikit-Learn has a simple implementation of a Neural Network for

classification (usually called a Multi-Layer Perceptron)

○ from sklearn.neural_network import MLPClassifier

● But we will look into more famous frameworks:

Neural Networks
Are the present and the future

● Neural Networks have unleashed a revolution in Machine Learning

● Getting them to work requires some work and care, but the outcome is

usually worth the trouble

● This is by no means a complete introduction, I recommend investing

some time with documentation of the modules covered and some

books:

○ 100 Page ML book; Hands On ML With Scikit-Learn, Keras &

Tensorflow; Deep Learning with PyTorch

Neural Networks
In python using TensorFlow/Keras

● We will use Keras packaged with TensorFlow
● A model is initiated with a Model class. We will use the Sequential

○ It takes a sequence of layers (classes from the layers module)
○ It connects them automatically sequentially
○ model = keras.models.Sequential([

○ keras.layers.Dense(100, activation='relu', input_shape=(2,)),

○ keras.layers.Dense(1, activation='sigmoid')

○])
● You then compile to define the Loss function, metrics, and the optimizer

○ model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy', keras.metrics.AUC()])

● Which you can then fit
○ model.fit(X_train, y_train, epochs=100) How SGD is implemented. Adam is

always a good first choice

Model choice and Hyperparameter Tuning
Neural Network shape

● How the shape of the network affects
its performance?
○ The deeper (more hidden layers)

and wider (number of units) the
greater is the capacity

● The performance of the Neural
Network can also be affected by the
choice of non-linear activation function

● How to choose?
● Is there a risk of using too large a

network?

Model choice and Hyper Parameter Tuning
Model Capacity
A model with insufficient capacity will fail to fit f: underfitting.

A model with too much capacity will fit the noise: overfitting.

x

y

x

y

x

y

Regularisation
In practice, one usually
overestimates the capacity
needed and then applies
regularisation to prevent
overfitting

Model choice and Hyperparameter Tuning
Regularisation

● Many ways of regularising a ML
model, which depend on the
type of algorithm

● One that always helps with
Neural Networks (and other
iteration-based training
algorithms) is early stop
○ Stop training when the

loss/metric worsens on a
validation set

Model choice and Hyperparameter Tuning
Best practices: Three different splits!

● Split the dataset into three sets
○ Train: for fitting
○ Val: for validation
○ Test: to derive the final

performance
● Never use the Test set at any

stage of your training or
validation => Information
Leakage (a.k.a. cheating)

Full Dataset

Train Validation Test

In our case we want to retain a good
statistical description of our data

1:1:1

Model choice and Hyperparameter Tuning
Choosing the final hyperparameters

● Try different combinations of hyperparameters. For each:
○ Train the network with the training set
○ Use the validation set to stop early
○ Measure the metrics on the validation set

● In the end: pick the hyperparameter combination with the best
validation set metrics

● If you learn how to do this you can become a professional Machine
Learning engineer in the industry

2nd hands-on
Let’s implement some ensembles
and neural networks using both
Scikit-Learn and TensorFlow

 3 - Finding new Physics signals

Because you only learn by doing

Machine Learning in New Physics Analyses
Finding a needle in a particle haystack

● Now that you are proficient Machine Learning engineers, let’s do some

physics with this!

● The idea is simple:

○ Data come

○ Data might have a signal we want to discover

○ Train a classifier to separate interesting events from the

background

○ Make a discovery and profit (joking, someone else gets the Noble)

Simulated pp collisions Dataset
https://zenodo.org/record/5126747

● Created in 2021, the dataset is composed of different Beyond the

standard model events (Signal) and Standard-Model events

(Background)

● The objective is to isolate as much signal as possible (Classification

problem)

The pp collisions Dataset
A few words on weights...

● The dataset is simulated (Monte Carlo)
● In order to be sure that we are covering a full description of the

simulated event we often simulate far more events than those
expected

● Furthermore, each event has different probabilities of happening
(given by the cross-section)

● In the end the simulation is composed of different simulated events at
different rates, and we need to reweight their contribution in order to
keep the statistical description of the data

3rd hands-on

