## ATLAS Physics @ LIP

Inês Ochoa on behalf of LIP ATLAS

Fourth Joint Workshop IGFAE / LIP April 13, 2023





### The LIP ATLAS team



- Physics Analyses (this talk)
- ATLAS Upgrade (next by H. Santos)



## Overview of the group's Physics analyses

#### Standard Model Precision Measurements



- Higgs boson couplings (b,t,W) and spin/CP of ttH, HWW
- Top quark Vts vertex and global fits
- Triple and quartic gauge boson couplings
- EFT interpretations

Direct Searches for New Physics



- · Vector-like quarks
- Diboson resonances
- FCNC in top quark interactions
- Dark Matter
- Anomaly detection

#### **Heavy lons**



Heavy quark production

3

## **Recent Highlights**

#### Higgs boson properties

- Higgs boson production in association with top quarks
- CP nature of top-Higgs Yukawa coupling
- CP-odd couplings in HWW vertex with new inference methods

#### Exotic searches

- Heavy resonance searches
- Resonant and non-resonant searches via anomaly detection
- Higgs boson tagging at high boosts

#### Image: Heavy lons

• Muon-jet **triggers** and **b-tagging** for the measurement of the nuclear modification factor of b-jets

![](_page_3_Picture_11.jpeg)

Jet reconstruction and calibration B-tagging & boosted boson tagging Machine learning Trigger

## Higgs boson properties: top quark coupling strength

![](_page_4_Figure_1.jpeg)

- Initially, indirectly observed via gg fusion and Higgs decay to  $\chi$   $\chi$ .
- Direct ttH observation in 2018.
- Here, first differential measurement of *ttH* signal strength in bins of Higgs p<sub>T</sub>: <u>JHEP 06 (2022) 097</u>

![](_page_4_Figure_5.jpeg)

5

## Higgs boson properties: CP nature of top-Higgs vertex

![](_page_5_Figure_1.jpeg)

- Measuring CP structure of the top-Higgs Yukawa coupling in ttH and tH events (with H→bb).
- Beyond the SM extension of the top-Higgs interaction as:  $\mathcal{L}'_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$

![](_page_5_Figure_4.jpeg)

#### Higgs boson properties: CP nature of W-Higgs vertex (I)

- Search for CP-odd couplings in HWW vertex, considering the only dimension-6 CP-odd operator in the HWW vertex.
- New angular observables proposed to increase sensitivity to the coefficient of the CP operator:

![](_page_6_Figure_3.jpeg)

![](_page_6_Picture_4.jpeg)

#### Higgs boson properties: CP nature of W-Higgs vertex (II)

Vormalized distribution

- First implementation of **novel inference methods** taking advantage of machine-learning and matrix element information.
- Neural networks are trained to provide a "sufficient statistics" for this specific measurement, i.e. they converge to an estimate of the *score function:* 
  - SALLY method introduced in <u>arXiv:1805.12244</u>

Score function: $t(x) = 
abla_{ heta} \log p(x| heta) \Big|_{ heta_{
m res}}$ 

![](_page_7_Figure_5.jpeg)

#### Higgs boson properties: CP nature of W-Higgs vertex (II)

- First implementation of novel inference methods taking advantage of machine-learning and matrix element information:
  - SALLY outperforms traditional methods in sensitivity to interference terms.
  - In the presence of quadratic terms, 2D analysis yields best results.

![](_page_8_Picture_4.jpeg)

| Observable                                                            | $c_{\widetilde{H}\widetilde{W}}$ S+B 95% CL (L= 300 fb^-1) |
|-----------------------------------------------------------------------|------------------------------------------------------------|
| 1D: transverse momentum of W boson                                    | [-1.62,1.62]                                               |
| 2D: W boson transverse momentum x transverse mass of WH system        | [-1.4,1.4]                                                 |
| 1D: $Q_\ell \times \cos \delta^+$                                     | [-0.227,0.227]                                             |
| 2D: W boson transverse momentum x ${ m Q}_\ell	imes\cos\delta^+$      | [-0.088, 0.088]                                            |
| MVA: SALLY, w/ final state particle 4 vectors                         | [-0.067, 0.067]                                            |
| MVA: SALLY, w/ final state particle 4 vectors + 3 angular observables | <mark>[-0.062, 0.062]</mark>                               |

Preliminary results

#### Exotics searches: a wide menu of searches

ATLAS Preliminary

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

Status: July 2022

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ 

Vector-like quarks

![](_page_9_Figure_6.jpeg)

![](_page_9_Figure_7.jpeg)

ATLAS Diboson Searches - 95% CL Exclusion Limits

Dark matter

![](_page_9_Figure_9.jpeg)

+Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

#### Too many to search for?

![](_page_10_Figure_1.jpeg)

#### Exotics searches via anomaly detection

#### On the forefront of anomaly detection techniques

- Goal is to increase generality of searches.
- <u>Mono-jet searches</u>: train auto-encoder to learn SM background. Take reconstruction error as an **anomaly score**.
- $\underline{Y \rightarrow XH}$  resonance search: "anomalous" X boson tagged via anomaly score, followed by bump-hunting in  $m_{Y}$ .

![](_page_11_Figure_5.jpeg)

#### Improving b-jet and Higgs boson tagging

![](_page_12_Figure_2.jpeg)

Mass

#### Improving b-jet trigger and tagging for heavy ions

#### Heavy flavour jet production in Pb+Pb collisions

- · Measurement of nuclear modification factor of b-jets: probes of the Quark Gluon Plasma
- Development of b-jet and muon-jet triggers
- NEW: ML-based offline b-tagging in heavy ion collisions

![](_page_13_Figure_5.jpeg)

2204.13530 (submitted to EPJC)

Efficiency of *b*-jet trigger as a function of muon and jet  $p_T$ 

## Last October we welcomed 250 members of ATLAS for a Collaboration Week in Lisbon

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

# ATLAS WEEK

LISBON 10-14-OCTOBER-----2022

### Run 3 is restarting!

![](_page_15_Figure_1.jpeg)

#### **Summary and conclusions**

![](_page_16_Picture_1.jpeg)

- From SM precision measurements, to probes of the quark-gluon plasma to direct searches for new physics, there is a wide physics program being carried out at LIP ATLAS.
- LIP is involved in the day-to-day detector operations, physics analyses and upgrade activities (more on this next).
- Looking forward to a successful Run 3 and to continue exploring all corners of the Standard Model and beyond.

![](_page_17_Picture_0.jpeg)

## **Simulation-based inference**

Score,  $t(x)|_{\theta} = \nabla_{\theta} \log p(x|\theta)|_{\theta}$ , is the statistically optimal observable in the vicinity of a parameter point  $\theta$  (generally the SM,  $\theta = 0$ )

Idea: use the joint score  $t(x, z_p | \theta)$  to approximate the score

• used in analyses, but neglecting PS, had. and detector simulation ( $z_p \equiv x$ )

$$t(x, z_p) = \nabla_{\theta} \log p(z_p | \theta) = \frac{\nabla_{\theta} p(z_p | \theta)}{p(z_p | \theta)} |_{\theta} \approx \frac{\nabla_{\theta} |\mathcal{M}(z_p | \theta)|^2}{|\mathcal{M}(z_p | \theta)|^2} - \frac{\nabla_{\theta} \sigma(\theta)}{\sigma(\theta)}$$

Alternative: use a NN with detector-level observables as inputs to extract  $t(x|\theta)$ , using joint score  $t(x, z|\theta)$  in the loss

• SALLY: Score Approximates Likelihood LocallY

![](_page_18_Figure_7.jpeg)

![](_page_19_Figure_0.jpeg)