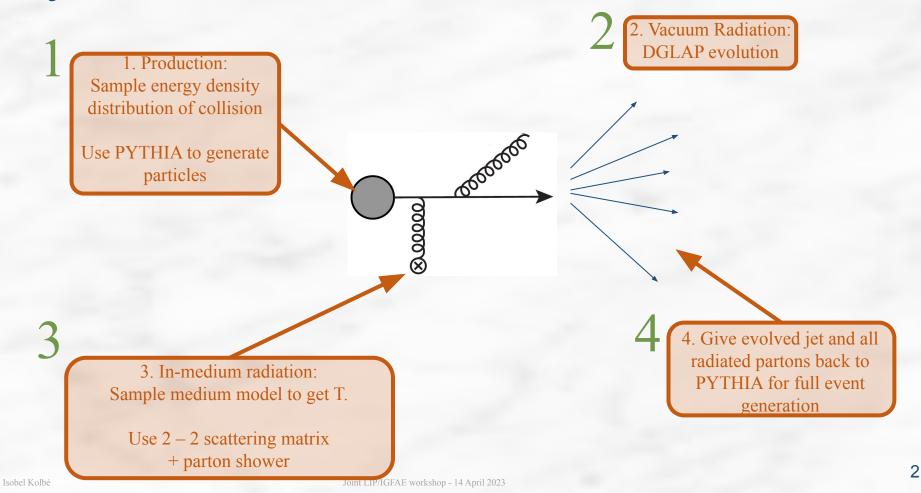
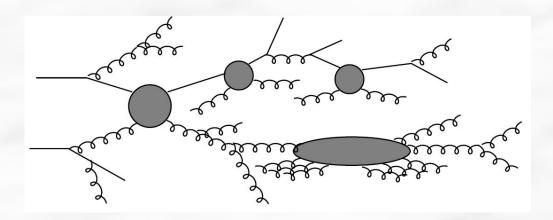
JEWEL for small systems Isobel Kolbé any system

Isobel Kolbé

Joint LIP/IGFAE workshop



MC jets with JEWEL 1311.004


The medium in JEWEL (new public version! jewel-2.4.0)

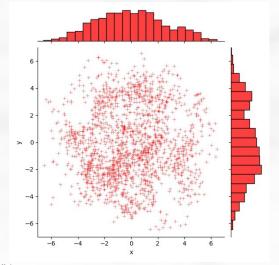
- 1. Vacuum: virtuality ordered parton shower (DGLAP evolution)
- 2. In-medium: vacuum JEWEL + medium interaction

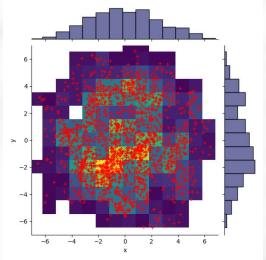
Simple (Bjorken + T⁴)

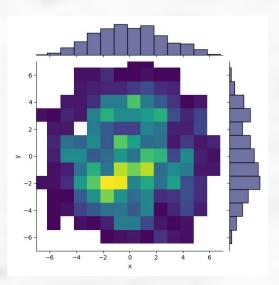
Glauber Woods-Saxon

LHAPDF 6

Subtleties:

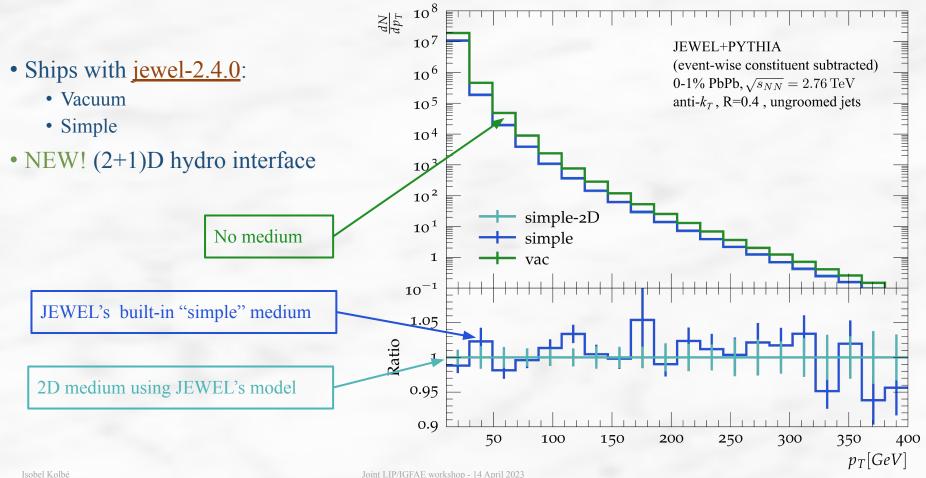

- Tracking medium recoils
- Subsequent subtraction
- Soft event constituents

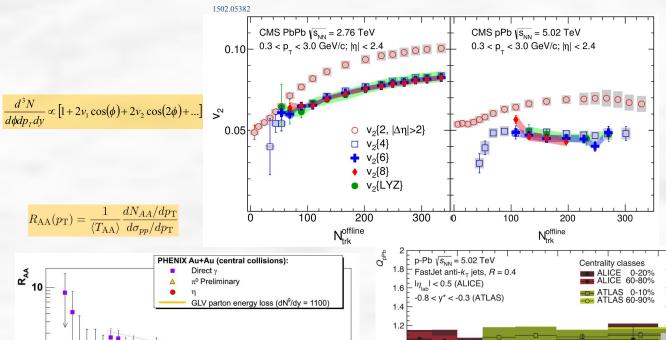

Hydro interface for JEWEL


New jewel-2.4.0-hydro-2D:

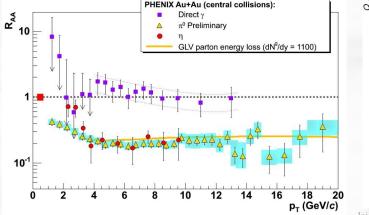
- Built on jewel-2.4.0-simple
 - Similar use of temperature and velocity for scattering centers
 - Similarly separable from main jewel code.
- Can include any (2+1)D background with T and (u_x, u_y) information Jet production location from N_{coll} information Subtleties with density determination

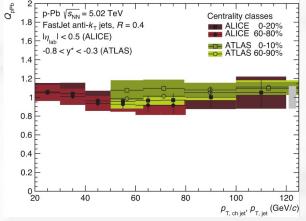
- Runs on IGFAE cluster



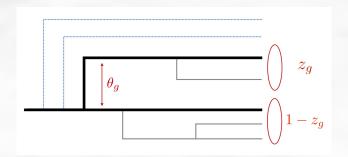

Joint LIP/IGFAE workshop - 14 April 2023

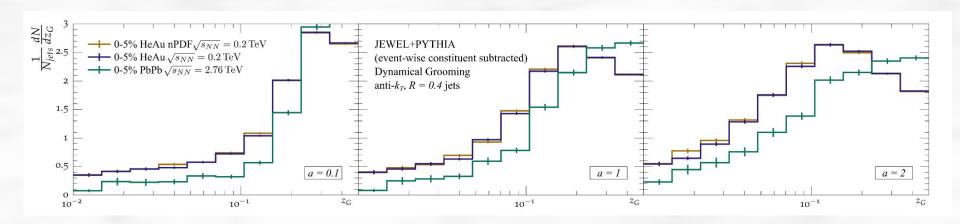
Validation of the hydro interface




Physics

The small system "problem"




Not clear if this is because

- 1. the modification is too small to be measured (the jets are not modified at such short scales)
- 2. There is no deconfined state
- 3. Observables like RAA are inappropriate.

Jet substructure example

$$\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A \, seq.}} \left[z_i (1 - z_i) \, p_{\mathrm{T},i} \left(\frac{\theta_i}{R} \right)^a \right]$$
 Dynamical Grooming (1911.00375)

WHAT?

Fully Online bi-weekly

Senior PhD, junior postdocs

Apply online (30 April) Chosen by committee

DEL

Blinded applications Track DEI stats

This seminar series is supported by

TOPICS

Hot QCD Cold QCD

Nuclear structure & reactions Nuclear astrophysics Fundamental symmetries & neutrinos

Quantum Computing and Machine Learning

O Institute for Nuclear Theory

O Lawrence Berkeley Lab

O InOubator for Quantum Simulation

O Jefferson Lab

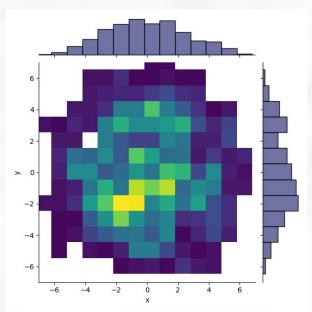
O Lawrence Livermore National Lab

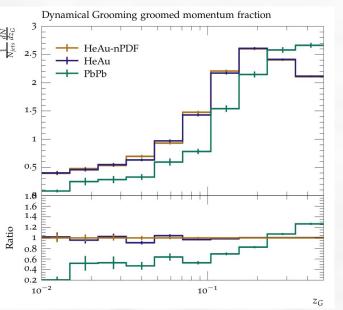
O FRIB Theory Alliance MUSES Collaboration

O Brookhaven National Laboratory

O Fermi Lab

O TRIUME

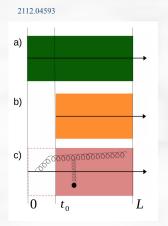

Junior? ¡Apply!

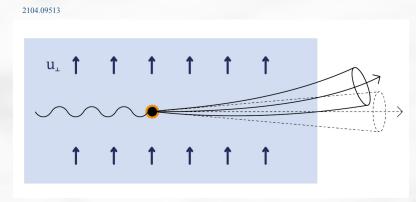

Senior? ¡Attend! ¿connect?

isobel.kolbe@gmail.com

Summary

- Presented hydro hack for JEWEL
- Argued its usefulness for studying small systems
- Argued its usefulness for other YoctoLHC projects
- Presented groomed jet mass and momentum sharing fraction

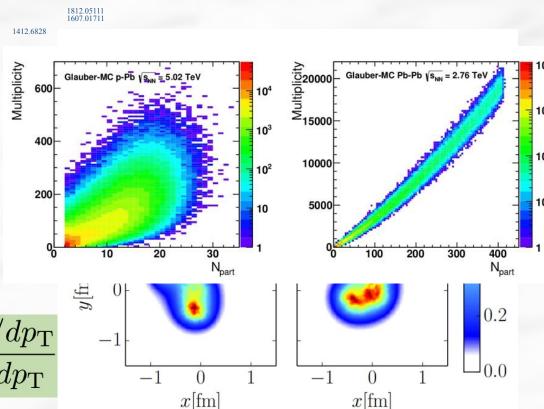

Backups


What (other) physics can we do with this?

- <u>Initial goal:</u> Explore new observables in a variety of collision geometries.
- Explore *any* medium effect on jets:
 - Time-delays
 - o Flowing medium
- Realistic R_{AA} vs v₂ in AA (more work)

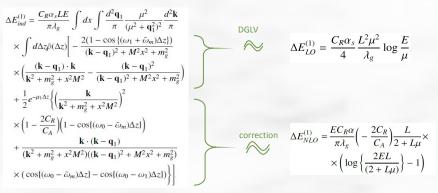
What does the modification of high- p_T partons look like in small systems?

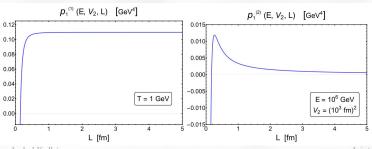
What role do initial state fluctuations play on jet properties?

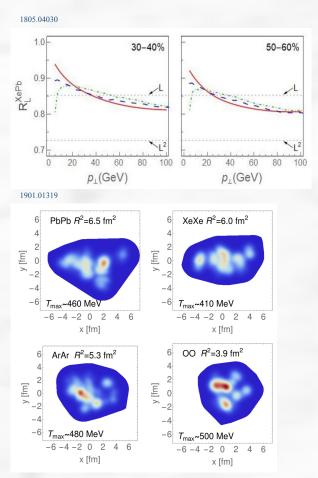

How do other environments affect jets?

Why $R_{\Lambda\Lambda}$ is the worst (in small systems)

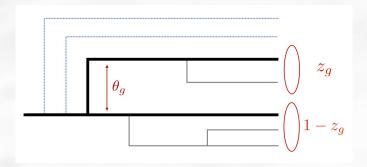
- Reliance on a reference system
- Steeply falling production spectrum
 - Sensitive only to large ΔE
 - Sensitive to PDFs and nPDFs
- Sensitive to initial condition
 - Geometry
 - Momentum anisotropy
- Sensitive to jet fragmentation
- Supposed to quantify ΔE , but

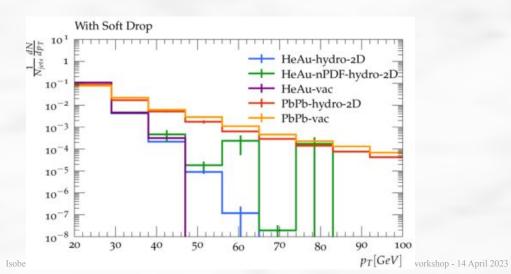

 - $\Delta E \leftarrow L \leftarrow N_{coll}$: uncontrolled $\Delta E = \Delta E(T)$: T is uncontrolled


$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = \frac{1}{\langle T_{\mathrm{AA}} \rangle} \frac{dN_{AA}/dp_{\mathrm{T}}}{d\sigma_{pp}/dp_{\mathrm{T}}}$$

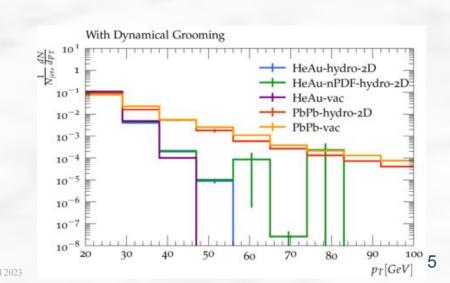


Why it's not just "The path length is too short"


- Path-length dependence is model dependent even for large systems.
- *All* the models rely on large L assumptions.
- Can try to relax those assumptions, it does not go well
- The very nature of the medium might well be different



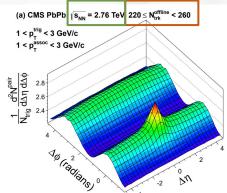
Grooming

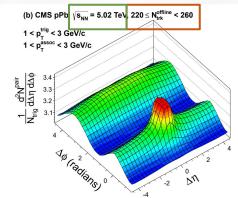


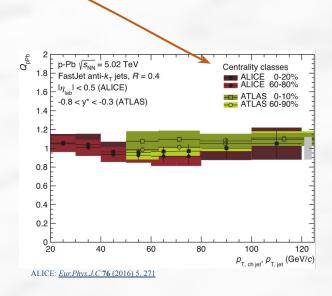
Soft Drop (1402.2657)

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

Dynamical Grooming (1911.00375)

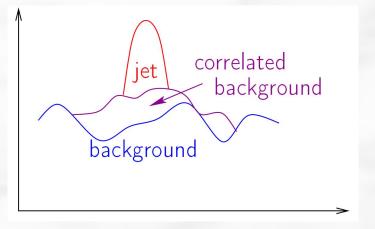

$$\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A \, seq.}} \left[z_i (1 - z_i) \, p_{\mathrm{T},i} \left(\frac{\theta_i}{R} \right)^a \right]$$



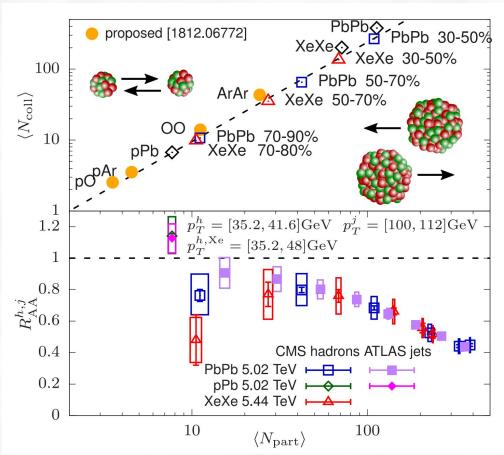

About event-selection

1305.0609

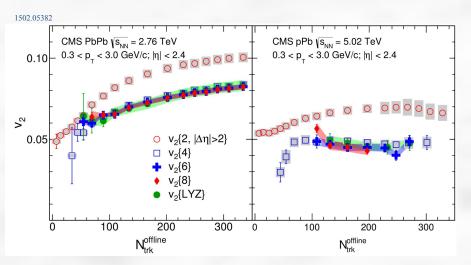
	PbPb data			pPb data		
Noffline bin	(Centrality)	$\langle N_{ m trk}^{ m offline} angle$	$\langle N_{ m trk}^{ m corrected} angle$	Fraction	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{ m trk}^{ m corrected} \rangle$
	± RMS (%)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,			,
[0,∞)				1.00	40	50±2
[0,20)	92±4	10	13±1	0.31	10	12±1
[20, 30)	86±4	24	30 ± 1	0.14	25	30±1
[30, 40)	83±4	34	43±2	0.12	35	42±2
[40, 50)	80±4	44	55±2	0.10	45	54±2
[50, 60)	78±3	54	68±3	0.09	54	66±3
[60,80)	75±3	69	87±4	0.12	69	84 ± 4
[80, 100)	72±3	89	112±5	0.07	89	108 ± 5
[100, 120)	70±3	109	137 ± 6	0.03	109	132 ± 6
[120, 150)	67±3	134	168 + 7	0.02	132	159+7
[150, 185)	64±3	167	210±9	4×10^{-3}	162	195±9
[185, 220]	62±2	202	253 ± 11	5×10^{-4}	196	236 ± 10
[220, 260)	59±2	239	299±13	6×10^{-5}	232	280±12
[260, 300)	57±2	279	350 ± 15	3×10^{-6}	271	328 ± 14
[300, 350)	55±2	324	405±18	1×10^{-7}	311	374±16



1305.0609


Recoils and Subtraction in JEWEL

- Track correlated background
- Subtraction RIVET plugin exists
- jewel-2.4.0 has several recoil and recoil tracking modes



On multi-particle correlations

Two- and four-particle correlations may still be influenced by non-collective effects (eg. fragmentation of back-to-back jets), so need higher correlations.

The fact that 4, 6, 8, and LYZ lie on top of each other suggests that these other effects are not the cause.