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Why we study heavy ion collisions
● Quantum matter in extreme conditions: explore 

the QCD phase diagram
● Collectivity: emergent behaviour from 

fundamental d.o.f.
● Cosmology: the QGP filled the early universe
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Why we study heavy ion collisions
● Quantum matter in extreme conditions: explore 

the QCD phase diagram
● Collectivity: emergent behaviour from 

fundamental d.o.f.
● Cosmology: the QGP filled the early universe

Main challenge: the QGP is extremely short 
lived (~10-24 s)

One approach: Probe it with (high-momentum) 
particles produced in the collision!
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Probing the QGP with parton cascades
Hard partons radiate until the hadronisation scale  →

Parton cascades provide a multi-scale object 
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Probing the QGP with parton cascades
Hard partons radiate until the hadronisation scale  →

Parton cascades provide a multi-scale object 

In-medium cascades require an interface with the evolving 
medium  → This encodes the QGP evolution! 

Experimental objects: jets
Different jets suffer different energy loss

Are the medium modifications sensitive to 
the vacuum evolution?
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First, a look at vacuum showers



  

Parton Cascades vs Jets
Parton Cascade: Sequence of QCD splittings, defined 
in perturbation theory  Can be sampled numerically →
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Parton Cascades vs Jets
Parton Cascade: Sequence of QCD splittings, defined 
in perturbation theory  Can be sampled numerically →

Jet: Sequence of hadron clusterings, according to 
some (arbitrary) definition  Proxy for initial parton→

For appropriate definitions jet structure coincides with the cascade ordering
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How to build a parton shower

Splittings with decreasing scale
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How to build a parton shower
Building blocks: QCD splittings

Splitting probability given by pQCD:

Splittings with decreasing scale

Probability of not emitting until some scale      :

Yields the next emission scale     , given 
the previous scale 
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Building differently ordered cascades

No-emission probability:

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

(Formation time)

(Virtuality)

(Angle)

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

p

q

k

To generate a splitting:

(Formation time)

(Virtuality)

(Angle)

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

p

q

k

To generate a splitting:

1. Sample a scale from 

(Formation time)

(Virtuality)

(Angle)

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

p

q

k

To generate a splitting:

1. Sample a scale from 

(Formation time)

(Virtuality)

(Angle)

2. Sample a fraction from

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

p

q

k

To generate a splitting:

1. Sample a scale from 

(Formation time)

(Virtuality)

(Angle)

2. Sample a fraction from
3. Retrieve the momenta

6 / 
32



  

Building differently ordered cascades

No-emission probability:

Interpretations for the scale: 

p

q

k

To generate a splitting:

1. Sample a scale from 

(Formation time)

(Virtuality)

(Angle)

2. Sample a fraction from
3. Retrieve the momenta
Ensure that 6 / 
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Parton Shower Details

No-emission probability:

How to set up a toy Monte Carlo:
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Parton Shower Details

No-emission probability:

How to set up a toy Monte Carlo:
● Splittings happen above some hadronization scale

● Can be rewritten as a condition

● Initialization condition:

E.g. Formation time:

Opening angle:

● To avoid large angles: 
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Determining Splitting Kinematics

No-emission probability:

p

q

k
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No-emission probability:
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1. Generate a scale 

2. Generate a momentum fraction 

3. Invert the relation

4. Obtain transverse momenta from definitions:
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Splittings along the quark branch Transverse momentum of 1st splitting
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Lund Plane Densities

Shower evolution: Transverse momentum decreases, momentum fraction increases.
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Formation Time Inversions
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Formation Time Inversions:

Splittings with a formation time 
shorter that their immediate 
predecessor.

Does this discrepancy translate into 
differences in quenching magnitude?
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Let’s look at jet quenching!



  

● Consider distance between daughters:

● A simplistic model: 

– Eliminate event if

(Decoherence)

Simple (Pseudo-)Quenching Models

First Splitting
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Simple (Pseudo-)Quenching Models

● Consider distance between daughters:

● A simplistic model: 

– Eliminate event if

● A slightly less simplistic model: 

– Eliminate event if

– And if  

First Splitting
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(Finite formation time)
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Simple (Pseudo-)Quenching Models

● Consider distance between daughters:

● A simplistic model: 

– Eliminate event if

● A slightly less simplistic model: 

– Eliminate event if

– And if  

First Splitting

(Decoherence)

(Finite formation time)

Eliminate these events

First Splitting

 → Consider two QGP ‘bricks’
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Influence of the first splitting on quenching
● Apply this pseudo-quenching model to all orderings

● Compute the percentage of ‘quenched’ events
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Influence of the first splitting on quenching
● Apply this pseudo-quenching model to all orderings

● Compute the percentage of ‘quenched’ events

Apply quenching condition to the 
first splitting

Apply quenching condition to the 
entire quark branch

Quantifies importance of ordering scale
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Summary
● We have created a toy Parton Shower Monte Carlo:

● To explore differences between ordering variables
● Aiming at a framework for time-ordered, medium-induced emissions

● Choice of vacuum ordering  Sensitivity to quenching at differential →
timescales

● Model does not account for medium dilution, differential energy loss
● Only implements vacuum emissions [Medium-induced emissions needed]

● Is jet quenching sensitive to the ordering of vacuum-like emissions? 
● Suggested by this simple model. [Work in Progress] Thank you! 17 / 
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Lund Plane Densities – Time ordering
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Lund Plane Densities – Virtuality ordering
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Lund Plane Densities – Angular ordering
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Lund Density Ratio – Mass / Formation Time

All Events
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Lund Density Ratio – Angle / Formation Time

All Events
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Lund Density Ratio – Mass / Formation Time

Events with at least 3 quark splittings
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Quenched events in simple model
● Apply this pseudo-quenching model to all orderings

● Compute the percentage of ‘quenched’ events

Apply quenching condition to the 
first splitting

Apply quenching condition to the 
entire quark branch
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