Exploring Parton Showers in the presence of an extended QCD medium

André Cordeiro

In collaboration with:

Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

Fourth Joint Workshop IGFAE / LIP

Why we study heavy ion collisions

- **Quantum matter in extreme conditions:** explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

Why we study heavy ion collisions

- Quantum matter in extreme conditions: explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

Main challenge: the QGP is extremely short lived (~10⁻²⁴ s)

<u>One approach:</u> Probe it with (high-momentum) particles produced in the collision!

Hard partons radiate until the hadronisation scale → Parton cascades provide a <u>multi-scale object</u>

Hard partons radiate until the hadronisation scale → Parton cascades provide a <u>multi-scale object</u>

In-medium cascades require an interface with the evolving medium \rightarrow This encodes the QGP evolution!

Hard partons radiate until the hadronisation scale → Parton cascades provide a <u>multi-scale object</u>

Experimental objects: <u>jets</u> Different jets suffer different energy loss

In-medium cascades require an interface with the evolving medium \rightarrow This encodes the QGP evolution!

Hard partons radiate until the hadronisation scale → Parton cascades provide a <u>multi-scale object</u>

In-medium cascades require an interface with the evolving medium \rightarrow This encodes the QGP evolution!

Experimental objects: <u>jets</u> Different jets suffer different energy loss

Are the medium modifications sensitive to the vacuum evolution?

First, a look at vacuum showers

Parton Cascades vs Jets

Parton Cascade: Sequence of QCD splittings, defined in perturbation theory \rightarrow Can be sampled numerically

Parton Cascades vs Jets

Parton Cascade: Sequence of QCD splittings, defined in perturbation theory \rightarrow Can be sampled numerically

Jet: Sequence of hadron clusterings, according to some (arbitrary) definition \rightarrow Proxy for initial parton

Parton Cascades vs Jets

Parton Cascade: Sequence of QCD splittings, defined in perturbation theory \rightarrow Can be sampled numerically

Jet: Sequence of hadron clusterings, according to some (arbitrary) definition \rightarrow Proxy for initial parton

For appropriate definitions jet structure coincides with the cascade ordering

Building blocks: QCD splittings

THERE AND THE CONSTRACT STRATTON مقفوقوقوقوقو

Building blocks: QCD splittings

Splittings with decreasing scale μ

Probability of not emitting until some scale S:

$$\Delta(s_{\rm prev}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\rm prev}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\rm cut}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Yields the next emission scale $\,s$, given the previous scale $\,s_{
m prev}$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\rm form}^{-1} = rac{|\ell|^2}{2p^+ z(1-z)}$$

(Forn

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2[z(1-z)]^2}$$
 (Angle)

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2[z(1-z)]^2}$$
 (Angle)

To generate a splitting:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

1. Sample a scale from $\ \Delta(s_{
m prev},s)$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2[z(1-z)]^2}$$
 (Angle)

To generate a splitting:

1. Sample a scale from $\Delta(s_{
m prev},s)$ 2. Sample a fraction from $\hat{P}(z) \propto 1/z$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

Parton Shower Details

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

Parton Shower Details

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

- Splittings happen above some hadronization scale $|\boldsymbol{\ell}|^2 > k_{
 m had}^2$
 - Can be rewritten as a condition $~z>z_{
 m cut}$
- Initialization condition: $t_{\rm form}^{-1} < p^+$

$$z_{\rm cut} = \frac{k_{\rm had}^2}{2p^+ t_{\rm form}^{-1}}$$

Parton Shower Details

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

- Splittings happen above some hadronization scale $|\boldsymbol{\ell}|^2 > k_{
 m had}^2$
 - Can be rewritten as a condition $~z>z_{
 m cut}$
- Initialization condition: $t_{\rm form}^{-1} < p^+$
- To avoid large angles: $\tilde{ heta} < 2\sqrt{2}$

E.g. Formation time:

$$z_{\rm cut} = \frac{k_{\rm had}^2}{2p^+ t_{\rm form}^{-1}}$$

Opening angle:

$$\tilde{\theta}^2 = \frac{|\ell|^2}{(p^+)^2 [z(1-z)]^2}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

1. Generate a scale $t_{\rm form}^{-1}$

2. Generate a momentum fraction z

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

$$\ell = (1 - z)k - zq$$
$$p = k + q$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Differences in ordering choices

Different orderings → Different phasespace for allowed splittings

Differences in ordering choices

Different orderings → Different phasespace for allowed splittings

Transverse momentum distribution follows $\frac{d|\boldsymbol{k}|^2}{|\boldsymbol{k}|^2}$

Lund Plane Densities

Shower evolution: Transverse momentum decreases, momentum fraction increases.

Lund Plane Trajectories

Lund Plane Trajectories

Differences between phase-space trajectories

Formation Time Inversions

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Formation Time Inversions

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Does this discrepancy translate into differences in quenching magnitude?

Let's look at jet quenching!

- Consider distance between daughters: $\mathrm{d}_s = \sqrt{rac{t_{\mathrm{form}}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{
m coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

• Option 1: Apply only to first splitting

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}L}}$ (Decoherence)

• A <u>slightly</u> less simplistic model:

(Finite formation time)

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}(L t_{\rm form})}}$
- And if $t_{\text{form}} < L$

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Eliminate event if $d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$ (Decoherence)

• A <u>slightly</u> less simplistic model:

(Finite formation time)

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}(L t_{\rm form})}}$
- And if $t_{\text{form}} < L$

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

$L [\mathrm{fm}]$	Ĺ	6	
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5
t_{f}^{-1}	1.1~%	3.1~%	$5.9 \ \%$
$\dot{ ilde{m}^2}$	1.1~%	3.1~%	5.9~%
$ ilde{ heta}^2$	4.0~%	9.1~%	15.6~%

Apply quenching condition to the <u>first splitting</u>

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

$L [\mathrm{fm}]$	Z	4	6	L [fm]		4	6
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5	$\hat{q} \; [{ m GeV}^2/{ m fr}]$	m] 2	5	5
$egin{array}{c} t_{\mathrm{f}}^{-1} \ ilde{m}^2 \ ilde{ heta}^2 \end{array} \ ilde{ heta}^2 \end{array}$	$egin{array}{cccc} 1.1 \ \% \ 1.1 \ \% \ 4.0 \ \% \end{array}$	${3.1}\ \%\ {3.1}\ \%\ {9.1}\ \%$	$5.9\ \%\ 5.9\ \%\ 15.6\ \%$	$egin{array}{c} t_{\mathrm{f}}^{-1} \ ilde{m}^2 \ ilde{ heta}^2 \end{array} \ ilde{ heta}^2 \end{array}$	$4.6 \% \\ 4.9 \% \\ 4.6 \%$	$\begin{array}{c} 11.5 \ \% \\ 12.3 \ \% \\ 11.5 \ \% \end{array}$	$22.0\ \%\ 23.5\ \%\ 22.0\ \%$

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

$L [\mathrm{fm}]$	Z	1	6		$L [{\rm fm}]$		4	6
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5	ģ	$\tilde{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5
$egin{array}{c} t_{\mathrm{f}}^{-1} \ ilde{m}^2 \ ilde{ heta}^2 \end{array} \ ilde{ heta}^2 \end{array}$	$egin{array}{cccc} 1.1 \ \% \ 1.1 \ \% \ 4.0 \ \% \end{array}$	${3.1}\ \%\ {3.1}\ \%\ {9.1}\ \%$	$5.9\ \%\ 5.9\ \%\ 15.6\ \%$		$egin{array}{c} t_{\mathrm{f}}^{-1} \ ilde{m}^2 \ ilde{ heta}^2 \end{array} \ ilde{ heta}^2 \end{array}$	$4.6 \% \\ 4.9 \% \\ 4.6 \%$	$\begin{array}{c} 11.5 \ \% \\ 12.3 \ \% \\ 11.5 \ \% \end{array}$	$\begin{array}{c} 22.0 \ \% \\ 23.5 \ \% \\ 22.0 \ \% \end{array}$

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>

Quantifies importance of ordering scale

Summary

- We have created a toy Parton Shower Monte Carlo:
 - To explore differences between ordering variables
 - Aiming at a framework for time-ordered, medium-induced emissions
- Choice of vacuum ordering → Sensitivity to quenching at differential timescales
 - Model does not account for medium dilution, differential energy loss
 - Only implements vacuum emissions [Medium-induced emissions needed]
- Is jet quenching sensitive to the ordering of vacuum-like emissions?
 - Suggested by this simple model. **[Work in Progress]**

Thank you!

Acknowledgements

Fundação para a Ciência e a Tecnologia

Backup Slides

Lund Plane Densities – Time ordering

Lund Plane Densities – Virtuality ordering

Lund Plane Densities – Angular ordering

Lund Density Ratio – Mass / Formation Time

All Events

Lund Density Ratio – Angle / Formation Time

All Events

Lund Density Ratio – Mass / Formation Time

Events with at least 3 quark splittings

Lund Density Ratio – Angle / Formation Time

Events with at least 3 quark splittings

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{
m coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

• Option 1: Apply only to first splitting

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Quenched events in simple model

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

$L [{\rm fm}]$		4	6	$L [{\rm fm}]$	2	4	6
$\hat{q} \; [\text{GeV}^2/\text{fm}]$	2	5	5	$\hat{q} \; [{ m GeV}^2/{ m fm}]$	2	5	5
$\frac{t_{\rm f}^{-1}}{\tilde{m}^2}$	2.6%	4.8 %	7.5%	$\frac{t_{\rm f}^{-1}}{\tilde{m}^2}$	11.0%	18.0%	28.1%
$\widetilde{ heta}^2$	2.0% 8.0%	$\frac{4.8}{12.5}$ %	1.5 % 18.2 %	$\widetilde{ heta}^2$	$11.8 \ 70 \ 10.9 \ \%$	$19.3 \ \%$ $18.0 \ \%$	$29.9 \ \%$ $28.1 \ \%$

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>