

An enhanced gamma/hadron discrimination using next-generation water Cherenkov detectors powered by Machine Learning techniques

Borja S. González (LIP/IST)

Ruben Conceição (LIP/IST), Alberto Guillén (UGR), Mário Pimenta (LIP/IST), Bernardo Tomé (LIP/IST)

Contact: borjasg@lip.pt

Fourth Joint Workshop IGFAE / LIP Lisbon, Portugal, April 13th, 2023

Very high-energy gamma-rays

O Extremely energetic photons

- From few hundreds of GeV up to the PeVs
- They point to their production source
- Gamma-rays are related to some of the most extreme and energetic nonthermal events taking place in the Universe such as Gamma-ray Bursts (GRBs)
- Test the existence of new physics at fundamental scales beyond the standard model as for example Dark matter indirect searches

Indirect gamma-ray detection techniques

Source: https://www.swgo.org/

Indirect gamma-ray detection techniques

Source: https://www.swgo.org/

Current EAS arrays

Current EAS arrays

Southern Wide-field Gamma-ray Observatory: SWGO

~3-year R&D project to design and plan the next generation wide field-of-view gamma-ray able to survey and monitor the Southern sky

- Southern Wide-field Gamma-ray Observatory: SWGO
 - → Formed at July 1st 2019
 - → 14 Countries
 - → ~ 50 institutes
 - → More than 100 scientists
 - To be built in South America at a latitude between 10 and 30 degrees south.

The Southern Wide-field Gamma-ray Observatory

Source: https://www.swgo.org/

Energy range covered with SWGO

From a few hundreds of GeV to many tens of PeV.

Energy range covered with SWGO

From a few hundreds of GeV to many tens of PeV.

Energy range covered with SWGO

From a few hundreds of GeV to many tens of PeV.

Explore different array layout configurations

Possible WCD options

WCD design is essential for muon tagging and gamma/hadron discrimination

Possible WCD options

WCD design is essential for muon tagging and gamma/hadron discrimination

The Mercedes WCD

Dimensions optimised for Single Muon identification: Maximisation of the signal asymmetry.

ML model

A 1-dimensional Convolution Neural Network

provides the probability that a muon has passed through the WCD.

Build a quantity to evaluate the gamma/hadron discrimination power and the muon quantity in the shower.

Single station perfomance

 Build a quantity to evaluate the gamma/hadron discrimination power and the muon quantity in the shower.

 $n_{stations}$

Single station perfomance

 Build a quantity to evaluate the gamma/hadron discrimination power and the muon quantity in the shower.

 $n_{stations}$

Excellent gamma/hadron discrimination at E ~ 1 TeV $\frac{S}{\sqrt{B}}$ ~ 4 for S=0.8 (similar to HAWC)

Sensitive to the overall number of muons in the shower event Small bias and the method has a resolution of ~20%

Conclusions

- Studies at few TeV show that it is possible to perform an excellent muon tagging/counting using a small WCD with multiple PMTs provided that the analysis is performed using ML techniques.
 - → Excellent gamma/hadron discrimination using stations with 3 PMTs.
 - → The method works in vertical/inclined showers and compact/sparse.
 - → One of the candidate designs for SWGO.
- On-going work and future steps:
 - → Test the performance of the method up to \sim 60 TeV.
 - \rightarrow γ /h discrimination combining the WCD muon info with shower patterns.
 - → Optimisation studies to be conducted: WCD dimensions, array fill factor.

Thanks for your attention.

Acknowledgements: IDPASC PhD grant PRT/BD/151553/2021

SwcGo The Southern Wide-field Gamma-ray Observatory

An enhanced gamma/hadron discrimination using next-generation water Cherenkov detectors powered by Machine Learning techniques

Borja S. González (LIP/IST)

Ruben Conceição (LIP/IST), Alberto Guillén (UGR), Mário Pimenta (LIP/IST), Bernardo Tomé (LIP/IST)

Contact: borjasg@lip.pt

Fourth Joint Workshop IGFAE / LIP Lisbon, Portugal, April 13th, 2023

Reference configuration for SWGO

Fig. 1. Left: Reference Configuration layout. Right: zoom of the boundary between core array and outriggers.

Anticipated schedule for SWGO

Figure 5 illustrates the anticipated R&D project schedule in terms of expected dates for milestones to be met. In case of slippage, original dates are marked with a \rightarrow .

Milestone	2019		2020		2021			2022			2023			2024							
Milestone	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
R&D Phase Plan		M1																			
Science Benchmarks			M2																		
Reference Configuration				\rightarrow	M3																
Site Shortlist Complete					\rightarrow						M4										
Candidate Configurations							\rightarrow			M5											
Perf. of Candidates Evaluated								\rightarrow						M6							
Preferred Site Identified									\rightarrow							M7					
Design Finalised											\rightarrow							M8			
CDR Ready													\rightarrow						M9		

Figure 5: Indicative schedule for the milestones of the R&D phase. An arrow indicates a shift from the originally indicated date. Those milestones in orange are complete as of this revision of the R&D Plan.

EAS vs IACTs

	EAS-D	IACT				
Duty-Cycle	High (≈100%)	Low (≈10-15%)				
Field-of-View	Large (2 sr)	Small (4-5 deg)				
Sensitivity	Good Sensitivity (5- 10% Crab flux)	High Sensitivity (< mCrab flux)				
Maximum Energy	~ PeV	<100 TeV				
Energy Resolution	Modest (~30-40%)	Very Good (~15%)				
Energy Threshold	High (~TeV)	Very Low (~10 GeV)				
Angular resolution	Good (0.2-0.8 deg)	Excellent (≈0.05 deg)				
Effective Area	decrease with zenith	increase with zenith				
Background rejection	Good (~80%)	Excellent (>99%)				
Zenith dependence	Very Strong ([cosə/]7)	Weak ([cos ϑ] ^{2.7})				

Source: CTA & future astroparticle experiments. D. della Volpe. LHC days 2018.

Typical structure of a CNN

WCD with 4 photo-sensors

Approach using 4 PMTs

- Dimensions based on Single Muon identification.
 - No blind spots. →
 - SM seen at most by 2 PMTs. →
 - Maximisation of the signal asymmetry → to find muons.
- Taking a base diameter: 4 m \bigcirc
 - Height: 1.7 m. →
 - Distance of the PMTs to the center: → 1.5 m.
 - Less water. →
- White walls made of Tyvek.
 - Lower the energy threshold. →
 - Shower geometry reconstruction taken → from the direct Cherenkov light

Simulation (4 PMTs)

Simulations:

- Detector simulation using Geant4.
- → CORSIKA showers at 5200 m.
- → Proton: $E_0 \in [0.7,6]$ TeV.
- → Gammas: $E_0 \in [1, 1.6]$ TeV.
- Events with similar signal at the ground.
- → $\theta \in [5^{\circ}, 15^{\circ}]$ and $[25^{\circ}, 35^{\circ}]$.
- → Dense (FF=80%) and sparse (FF=30%) arrays covering an area of 80000 m².

Events with equivalent reconstructed energy ~ 1 TeV

ML model (4 PMTs)

Analyse signal to get the probability that a muon has passed through the WCD.

Inclined showers and sparse array

Performances nearly independent of the shower inclination

Stations in the sparse and dense array have the same performance.

 Build a quantity to evaluate the gamma/hadron discrimination power and the muon quantity in the shower.

Excellent gamma/hadron discrimination at E ~ 1 TeV S/sqrt(B) ~ 4 (similar to HAWC)

Sensitive to the overall number of muons in the shower event Small bias and the method has an intrinsic resolution of 2%

 $\hat{N}_{\mu} = 1.67 P_{\gamma h} - 3.22$