

Radio detection of air showers at Auger

Marvin Gottowik

13.04.2023

Instituto Galego de Física de Altas Enerxías (IGFAE)

Extensive air shower (EAS)

- Interaction of incoming cosmic ray with atomic nucleus generates highly energetic secondary particles
- Further interactions or decay of secondary particles
- Cascade of secondary particles ~10¹¹ particles for a 10²⁰ eV primary
- Maximal number of secondary particles at an atmospheric depth X_{max}

The Pierre Auger Observatory

Auger Engineering Radio Array (AERA) 153 autonomous radio stations, total area: 17 km²

Water Cherenkov Detector (WCD)

1660 stations with 1.5 km spacing total area: 3000 km²

Radio at Auger | Slide 3

Hybrid Observation

Auger Engineering Radio Array (AERA)

- Largest radio detector for cosmic rays (so far), running since 2011
- Energy range: 10¹⁷ 10¹⁹ eV
- Built in phases with different antenna types and spacings 144 m to 750 m
- 2 polarizations (NS, EW), bandwidth 30 – 80 MHz
- Precursor of the AugerPrime Radio Detector

AugerPrime Radio Detector

- Externally triggered by WCD, developing an independent radio trigger for air showers with small particle footprint
- Full hexagon (7 stations) deployed since in November 2019 in the field. Now extending to 38 stations, ~70 km → This will be the largest radio detector for cosmic rays

Radio at Auger | Slide 6

Radio emission

- 1st order: geomagnetic radiation
 - Electrons/Positrons deflected in Earth's magnetic field
 - Scales with magnetic-field strength and angle between shower axis and \vec{B}
 - Polarized into direction of Lorentz force $\vec{v} \times \vec{B}$
- 2nd order: charge excess / Askaryan effect
 - Time varying net charge excess due to ionization of ambient medium
 - Radially polarized towards shower core
- Superposition of both emissions and Cherenkov-like compression of signal on a ring around shower axis
 → asymmetric (bean-like) radio footprint

Radio emission

• 1st order: geomagnetic radiation

- Electrons/Positrons deflected in Earth's magnetic field
- Scales with magnetic-field strength and angle between shower axis and \vec{B}
- Polarized into direction of Lorentz force $\vec{v} \times \vec{B}$

• 2nd order: charge excess / Askaryan effect

- Time varying net charge excess due to ionization of ambient medium
- Radially polarized towards shower core
- Superposition of both emissions and Cherenkov-like compression of signal on a ring around shower axis

 \rightarrow asymmetric (bean-like) radio footprint

Charge excess fraction

- Derive relative strength of the electric fields induced by both processes, *a*, from measured polarization
- AERA: \overline{a} = 0.14 ± 0.02 for 56 stations in 17 events
 - There is a charge excess component
 - Geomagnetic mechanism is dominant in air

Charge excess fraction

- AERA: \overline{a} = 0.14 ± 0.02 for 56 stations in 17 events
 - There is a charge excess component
 - Geomagnetic mechanism is dominant in air
- LOFAR: increase of the charge-excess fraction with
 - Increasing radial distance from the shower axis r'
 - Decreasing zenith angle θ
- We have much more data by now. No inclined air showers with $\theta > 60^{\circ}$ analysed
- MA student in Wuppertal repeating analysis to obtain full description of a(zenith angle, position in the showerplane)

Interferometry - Concept

Measure signal
$$s_i(t)$$
 at location a_i

Calculate light travel time from antenna \vec{a}_i to a location in space \vec{x}

$$\Delta_i(\vec{x}) = \frac{|\vec{x} - \vec{a}_i| n_{eff}}{c}$$

Sum the waveforms from all antennas together with delays $\Delta_i(\vec{x})$ at \vec{x} : $S(\vec{x}, t) = \sum_{i}^{N} s_i(t + \Delta_i(\vec{x}))$

Reconstructed AERA event

- Interested in reconstructing $X_{\mbox{\scriptsize max}}$
- Very precise timing calibration needed

intensity along axis (normalised)

Calibration with FD energy scale

- FD sets the only energy scale for Auger!
- Energy estimators of other detectors need to be calibrated with the FD

work in progress

Muon content

- For inclined WCD-AERA hybrid events separation of electromagnetic and muonic component in the atmosphere
 - WCD: muon estimator, R_{u}
 - AERA: energy, E
- Hybrid events allow measuring R_μ(E) and compare result for data and simulations
- AERA data from 26.06.2013 to 16.11.2019
 → 59 events after cuts
- Deficit of muons in simulations
- Challenge: low number of events
 - − AERA is small \rightarrow RD is not
 - High energy threshold originating from the WCD 1500m array
 - → develop reconstruction for the 750m sub-array

Muon content

- For inclined WCD-AERA hybrid events separation of electromagnetic and muonic component in the atmosphere
 - WCD: muon estimator, R_{μ}
 - AERA: energy, E
- Hybrid events allow measuring R_μ(E) and compare result for data and simulations
- AERA data from 26.06.2013 to 16.11.2019
 → 59 events after cuts
- Deficit of muons in simulations
- Challenge: low number of events
 - − AERA is small \rightarrow RD is not
 - High energy threshold originating from the WCD 1500m array
 - → develop reconstruction for the 750m sub-array

Calibration of the SD HAS infill with AERA

Particles (Felix Riehn)

- Use infill and regular array in Efit
- Energy estimator (N19)

80908285300 2008-03-31 13:00:52 N19: $1.51\pm0.13 \ \theta$: 78.28 $\pm0.19 \ \phi$: 143.79 $\pm0.13 \ N_{tank}$: 18 $E = 8.45 \,\mathrm{EeV} \, E_{\mathrm{CIG}} = 8.45 \,\mathrm{EeV}$ 0 0 17 25000T2Life 2250016 20000 ₩ 15 _ work in progress Northing (m) 175005 15000141250013 10000 75000 12 5000-29-28-27-26 -25-24x / km -35000-30000 - 25000-20000Easting (m) Combine both information

Radio (me)

Standard reconstruction

• Read external geometry from Efit

event_ID n19_efit other ... radio_enery_offline 123 1 0 1.000000e+19

Summary

- With radio we can reconstruct all important shower observables: arrival direction, energy, X_{max.} Sensitive to neutral particles, hard(er) to detect with other detectors
- AERA showed maturity of the radio detection, RD will collected CR at the highest energies with large statistics
- Still a lot of interesting physics to explore, esp. with hybrid events

 Event statistics of the RD for 10-year exposure using measured flux at Auger