SciFi Performance

Conclusion

Backup 0000

A Scintillating Fibre Tracker for the SND@LHC Detector

Innovative Detector Technologies and Methods

Guilherme Soares

On the behalf of the SND@LHC Collaboration gmachado@cern.ch

14 September 2023

Scattering and Neutrino Detector

at the LHC

IDTM 2023

Index •	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Index					

1 Introduction

2 SciFi Structure

3 SciFi Performance

- Setups
- Detection Efficiency
- Position Resolution
- Time Resolution
- Energy Measurement

4 Conclusion

5 Backup

Index O	Introduction	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000

Introduction

Scintillating Fiber Goals :

- Resolve tracks in between the Emulsion Bricks spacial resolution ≈ 100 µm
- Timestamp Neutrino events in the Target
- Assist measuring EM shower energy

With Run 3 data available and both in-lab and test beam data, we can properly characterise the SciFi modules.

Index	Introduction	SciFi Structure	SciFi Performance	Conclusion	Backup
O	O	●00		OO	0000

Scintillating Fiber Detector

Full System :

- 5 Stations
- X and Y Planes with readout
- 3 Fibre Mats per plane
- Developed by the same team as the SciFi in LHCb
- Water cooling and heat sink present

Mats :

- 133 mm width and 390 mm length
- 6 stacked layers of Kuraray SCSF-78MJ Plastic
- S13552 SiPM Hamamatsu multi-channel array readout
- TOFPET2 ASIC based FEE

Index	Introduction	SciFi Structure	SciFi Performance	Conclusion	Backup
O	O	O●O		OO	0000

Front End Electronics Readout

SiPM Array :

- 128 Channels divided in 2 halves
- 250µm wide channels
- 32.54 mm wide
- 200µm die gap in the middle
- 400µm gap between first channel in consecutive arrays
- Readout by 2 TOFPETs

TOFPET2 ASIC :

- 24 per SciFi Plane
- 64 TOFPET channels with independent logic
- Signal amplification and digitisation
- Discriminators for timing, triggering and energy measuring
- Global digital clock at 160 MHz (\approx 6.25 ns)
- Timing resolution < 50 ps

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000

TOFPET Trigger Settings

TOFPET discriminators contain 64 different input biases (programable in DAC counts)

Discriminators \mathbf{T}_1 and \mathbf{T}_2 used for triggering and timing

Different trigger modes :

- Dual Trigger Threshold (DTT)
 - T₁ triggers digitisation
 - Dead time due to Dark Counts
- Fast Dark Count Rejection (FDCR)
 - T₂ triggers digitisation
 - Timestamp reintroduced through a delay in T₁

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion 00	Backup 0000
Setups					
SND@	LHC in TI18				

Refer to slide 4 for more details, or Federico's previous presentation for an overview.

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Setups					

Testbeam

Hadronic Calorimeter calibration testbeam in the H8 beam line on CERN's North Area

SciFi provides interaction vertex, beam profile information and its performance can be studied

May 24th to June 7th

Variable π energies (mostly 180 GeV)

Setup :

- 4 Stations
- X and Y Planes with readout
- Smaller Modules (13 × 13cm²)
- 8 TOFPET2 ASIC per plane
- Interleaved with iron blocks during second week (to emulate emulsion target)

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Setups					

Laboratory

Time Coincidence Setup

- 2 Overlapped SciFi Planes
- Prototype Station for Testbeam
- 13 × 13cm² Active Area
- ⁹⁰Sr Electron Source
- DTT and FDCR tested

QDC Calibration

- Direct Laser Injection
- Tuneable Laser Intensity
- Aperture for SiPM Array
- No more than 5 channels active at a time
- 100kHz Frequency

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Detection Efficiency					

Detection Efficiency

Calculating Detection Efficiency :

- Select a reconstructed track from the SciFi
- Ignore plane under study
- **TI18**:
 - Require ≥ 3 SciFi clusters in X and Y to fit the track projections
 - For plane in question, search for a cluster (no residual requirements due to low noise)

Testbeam

- Require ≥ 2 SciFi clusters in X and Y to fit the track projections
- For plane in question, search for clusters near the extrapolated position

Efficiency given by :

 $\mathsf{Eff} = \frac{\sum_{tracks} \Phi(tracks, planes)}{\#\mathsf{Reconstructed Tracks}}$ Where the cluster found in the extrapolated track is :

$$\Phi(\text{track,plane}) = \begin{cases} 1 & \text{if (track extrap. - cluster pos.)} < 2 \times \text{channel size} \\ 0 & \text{otherwise} \end{cases}$$

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Detection Effic	iency				
Detect	ion Efficiency				

Testbeam results :

- Drops in efficiency in dead zones
- Single Plane Efficiency > 95%

TI 18 results :

- Detection Efficiency constant throughout Run 3
- Station Inefficiency < 2 × 10⁻⁴
- Plane inefficiency is correlated
- Single Plane Efficiency > 99%
- Base efficiency between gaps \approx 99.8%

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Position Resolution					

Position Resolution

Estimating Spacial Resolution through SciFi mat alignment :

- Choose SciFi tracks (Analogous selection to previous study)
- Find Distance of Closest Approach (DOCA) from SciFi Clusters to Extrapolated Track
- Minimize DOCA with respect to X, Y and 3 Rotation Angles
- Shift SciFi mats by constants obtained
- Plot Residuals
- Obtain spatial resolution from Gaussian fit

With TI18 data from 2022, the spatial resolution is within $180\mu m < \sigma_{x,y} < 620\mu m$

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Time Resolution					

Time Resolution

Calculated 2 different ways :

- Find fitted tracks
- Check Stations with exactly 1 cluster
- Consider hit timing the earliest timing in the cluster
- Correct for light propagation through fiber (v = 15cm/ns)
- Between Planes :
 - Plot time differences for each mat combination
- Between Stations :
 - Take mean time from both planes in the station (X and Y)
 - Plot time difference for each station combination

٧

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Time Resolution					

Time Resolution

Results from the Laboratory measurements

Laboratory setup allows exploring the Bias threshold applied on the ${\bf T}_1$ and ${\bf T}_2$ discriminators

TI18 results have data for the different **T**₁ delays applied during FDCR acquisition mode

Default mode (3ns delay) provides the best resolution

Consistent with Laboratory results

Stations	off	3ns	6ns
1 - 2	355	353	332
1 - 3	359	332	353
1 - 4	375	354	372
1 - 5	371	348	345
2 - 3	388	333	353
2 - 4	365	353	369
2 - 5	373	347	368
3 - 4	361	327	382
3 - 5	355	352	361
4 - 5	380	357	408
Average	368,2	345,6	364,3

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000
Time Resoluti	on				
Time F	Resolution				

Testbeam Data

Varied T_1 , T_2 and the SiPM Over Voltage (OV)

Plane	Time res. [ns]	Uncertainty [ns]
1x	0.351	0.003
1y	0.373	0.004
2x	0.366	0.003
2y	0.371	0.002
3x	0.369	0.002
Зy	0.377	0.003
4x	0.394	0.002
4y	0.394	0.002

- σ_t seems stable with regards to confirmation threshold T₂
- Lack of Dark Count Rejection deteriorates *σ*_t
- σ_t improves at lower T₁
 IDTM 2023

- σ_t improves at higher
 Over Voltage
- Once again, Dark
 Count presence
 degrades σ_t

Index O	Introduction O	SciFi Structure	SciFi Performance ○○○○○○○○●○	Conclusion 00	Backup 0000
Energy Measu	urement				
Enera	v Measureme	nts			

TOFPET can measure energy through 2 methods :

Time over Threshold (ToT)

LIIGIGY

Charge to Digital Converter (QDC)

active over a programmable period of time

QDC should yield more accurate results

System calibrated through VATA (High energy resolution that resolves single-photon peaks) for the SiPMs

Can then replace FEE with the ones for SND@LHC and study the QDC response as a function of the laser intensity!

Raw SiPM response not too promising Issues at low intensities (SciFi range)

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000			
Energy Measu	Energy Measurement							
Energy	y Measureme	nts						

TOFPET can measure energy through 2 methods :

- Time over Threshold (ToT)
- Charge to Digital Converter (QDC)

active over a programmable period of time

QDC should yield more accurate results

System calibrated through VATA (High energy resolution that resolves single-photon peaks) for the SiPMs

Can then replace FEE with the ones for SND@LHC and study the QDC response as a function of the laser intensity !

Raw SiPM response not too promising

Issues at low intensities (SciFi range)

However, this can be corrected, and the different offsets can be solved as well!

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion • O	Backup 0000

Conclusion

The SciFi is major success!

- Spatial resolution $\approx 300 \mu m$
- Time resolution \approx 350ps
- SciFi fulfilled the goals of detecting neutrinos
- Progress was done towards incorporating the SciFi in the energy measurement

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion O●	Backup 0000

Conclusion

The SciFi was integral in observing collider neutrinos for the first time!!!

Thank you

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000

SCSF-78MJ Plastic

Description Em		sion Posk[nm]	Decay Time	Att.Leng.20	
SCSF-78	blue	450	2.8	>4.0	Long Att. Length and High Light Yield

SCSF-78

SCSF-78

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 0000

Position Resolution

TI18:

IDTM 2023

Index O	Introduction O	SciFi Structure	SciFi Performance	Conclusion OO	Backup 00●0

Laser Calibration

Index	Introduct

SciFi Structur

SciFi Performance

Conclusio 00 Backup 0000

Low Intensity Problems for FDCR at 6ns

- 1 kHz Laser
- 100 seconds
- Expected 10⁵ Hits at low T₂ threshold

Detection Efficiency very low for low intensities Tails of distributions become pronounced

Very likely due to small signal shape, making falling edge of T_2 appear before 6 ns