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Outline
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• Jets and b-tagging 
• A brief physics motivation 

• Overview of b-tagging algorithms in ATLAS (current state-of-the-art) 
• Where vertexing comes in 

• NDIVE: Differential vertexing and its application to b-tagging 
• Future prospects 



Jets in hadron colliders come in different multiplicities, sizes, flavours… 

Mono-jet event High-multiplicity jet event b-jets from a Higgs boson decay



Physics motivation
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• Identifying b-jets enable us to select interesting 
physics signatures from Standard Model 
processes and beyond…

Higgs boson decay modes

VH, H→bb

Top quark decay
SUSY, exotic particles, …



b-quarks → b-hadrons → b-jets
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• b-jets contain the decay particles of 
long-lived b-hadrons and some 
additional particles. 

• This leads to unique characteristics 
that distinguish them from light (u,d,s,g) 
and to a lesser extent charm (c) jets:  
• A secondary vertex 
• Tracks with large impact parameters 
• Leptons from the b-hadron decay

fragment into which decay and create

d0: transverse impact parameter 



Overview of b-tagging algorithms in ATLAS (I)
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Inputs:

Jet and 
their 

Tracks

Impact parameter 
significance of tracks

“Low-level” algorithms:

Deep Sets NN on tracks

Inclusive secondary 
vertex fitting

Decay chain finding

IPxD

DIPS

SV1

JetFitter

“High-level” algorithm:

Neural network 
combines outputs 

(DL1 family of 
taggers)

Domain-specific variables (manually optimised)

Trained track-based machine learning model(s) “Is this a b-jet?”

Output probabilities:
 
 

pb
pc
plight



Overview of b-tagging algorithms in ATLAS (II)
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• New state-of-the-art: GN1 & GN2 
• Single end-to-end neural network (graph or 

transformer) with auxiliary training objectives to 
learn jet origin. 

• No usage of intermediate low-level algorithms! 
• No explicit secondary (or tertiary) vertex 

reconstruction! 
• i.e. no vertex fitting

CERN Data Science Seminar by Sam Van Stroud

Simulation

Jet Associated 
tracks

GN1

Jet Flavour

Track origins

Track pairing

 
 

pb
pc
plight

https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf


Vertex finding & vertex fitting

• Vertex finding: grouping tracks that 
originate at the same point in space 

• Vertex fitting: given a set of  tracks and 

their track parameters  and associated 

covariance matrices , estimate the the 

vertex position  and the momentum 

vectors  of all tracks at the vertex. 

N
qi

Vi

v
pi
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Schlomi J., et al, Secondary Vertex Finding in Jets with Neural Networks

Frühwirth, Strandlie in Pattern Recognition, Tracking and Vertex 
Reconstruction in Particle Detectors

Can we integrate vertex fitting into an ML end-to-end trainable algorithm?

https://arxiv.org/pdf/2008.02831.pdf
https://arxiv.org/pdf/2008.02831.pdf
https://arxiv.org/pdf/2008.02831.pdf


 NDIVE: Neural Differentiable Vertexing layer 

• We propose to explicitly reintroduce vertex reconstruction into end-to-end ML b-tagging 
algorithms via a vertexing layer that performs both vertex finding and vertex fitting.
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 NDIVE: Neural Differentiable Vertexing layer 

• We propose to explicitly reintroduce vertex reconstruction into end-to-end ML b-tagging 
algorithms via a vertexing layer that performs both vertex finding and vertex fitting.
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Neural network 
trained to assign 
weights to tracks 

per vertex

Vertex fitting algorithm 
with tracks and weights 

as inputs and no 
trainable parameters

Loss function = mean euclidean distance (true, pred)



Inclusive Vertex Fit formulation (I)
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• We perform an inclusive vertex fit with per-track weights, following closely Billoir’s algorithm, 
using a local parameterisation of tracks around a reference point.

• The goal is to find a common point of production for a set of tracks. 
• The values to be optimised are the vertex position  and track 

momentum at the vertex : 
v

{pi}
x = (v, {pi})

Track 2

Track 1

Track 3

p1
p2

p3

q2, V2

q1, V1

q3, V3

Points of closest approach to a reference

v

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593


Inclusive Vertex Fit formulation (II)

• We perform an inclusive vertex fit with per-track weights, following closely Billoir’s algorithm, 
using a local parameterisation of tracks around a reference point.
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• The input data are the measured track parameters 
 and their covariance matrix . 

• Perigee representation. 
• Additionally, a set of per-track weights  which determine how 

much each track contributes to the vertex fit.

qi = (d0, z0, ϕ, θ, ρ) Vi

wi

 
 

 
 

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature

Track 2

Track 1

Track 3

p1
p2

p3

q2, V2

q1, V1

q3, V3

Points of closest approach to a reference

v

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593


Inclusive Vertex Fit formulation (III)

• We perform an inclusive vertex fit with per-track weights, following closely Billoir’s algorithm, 
using a local parameterisation of tracks around a reference point.
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• The following objective function  is minimised:𝒮

Track and fit parameters are related 
via a track model  
(e.g. a helical model of a curved track)

qmodel,i = hi(v, pi)

𝒮 = χ2 =
N

∑
i=1

= wi(qi − hi(v, pi))TV−1
i (qi − hi(v, pi))

Track 2

Track 1

Track 3

p1
p2

p3

q2, V2

q1, V1

q3, V3

Points of closest approach to a reference

v

The derivatives of a fit vertex  with respect to the weights  are needed to 
train any downstream or upstream neural networks!

v wi

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593


Inclusive Vertex Fit formulation (IV)
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

Enabling differentiation through the optimisation of the vertex fit: 
1. Forward pass with iterative numerical algorithm to perform optimisation. 
2. Backward pass done with a custom derivative. 

Once a vertex solution is found, the gradient of the solution 
vertex with respect to input weights and particle features is 

defined using implicit differentiation.

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593


Optimisation as a layer (implicit differentiation)

• Specify the conditions we want the layer’s output to satisfy: 
 

• We need the derivative of a fit vertex ( ) with respect to the 

parameters  to train the upstream neural network. 

• Note that at the minimum of  we have: 

 

• Taking the derivative wrt  and accounting for the implicit 

dependence of  on : 

 ⇒ 

x̂(α) = arg min
x

𝒮(x, α)

x
α

𝒮
∂𝒮(x, α)

∂x
= 0

α
x̂ α

0 =
d

dα
�̂� =

∂�̂�
∂α

+
∂�̂�
∂x

∂x
∂α

∂x
∂α

= − ( ∂�̂�
∂x )

−1
∂�̂�
∂α
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x = (vertex, {pi})

α = (weights, tracks, cov)

�̂� = ∂x𝒮(x̂, α)

Derivatives of optimisation solution wrt 
objective parameters needed for training.



Dataset & Inputs 

• Top-pair production from proton-proton collisions simulated at .  
• Generated with Pythia8 with ATLAS detector parameterisation via Delphes. 

s = 14 TeV
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Zenodo: Secondary Vertex Finding in Jets Dataset

Training features: 
• Track perigee parameters and 

their errors 
• Signed d0 and z0 significances 
• log(track pT / jet pT) 

•  (track, jet)ΔR

Primary vertex

Secondary vertex

Fragmentation tracks

B-hadron 
decay tracks

Tertiary vertices from a 
c-hadron decay

https://zenodo.org/record/4044628
https://zenodo.org/record/4044628


Good tracks → Good vertices
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b-jet c-jet

Track origin color code: 
From B-hadron 
From C-hadron 
From primary vertex 
Other



Track selection performance 
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Work in progress!

• “Selected tracks”: per-track weights normalised by maximum 
weight in each jet and required to be above > 0.5

• Efficiency: number of decay tracks selected over all decay tracks 
• Purity: number of decay tracks selected over all selected tracks 



Vertex reconstruction performance
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Work in progress!

Unbiased and highly peaked at 0



Integration in a flavour-tagging model  
FTAG (Baseline)
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pb
pc
plight



Integration in a flavour-tagging model  
FTAG+NDIVE
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pb
pc
plight



Model comparison: ROC curve
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Work in progress!

Db = log
pb

(1 − fc)pl + fc pc

fc = 0.05
better



Future prospects

• These methodological developments are generic, 
applicable to other vertex fitting algorithms and 
other schemes for integrating vertex information 
into neural networks. 

• To illustrate possible improvements, we show the 
potential for huge rejection rate gains in an ideal 
scenario with perfect track selection.
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Work in progress!



 In summary…

• We introduce NDIVE: a neural differentiable vertexing layer 
• First differentiable vertex fitting algorithm. 
• Paper coming soon! 

• Vertex fitting formulated as an optimisation problem: 
• Gradients of optimised solution vertex defined through implicit differentiation. 
• Can be passed to upstream or downstream NN components for training. 

• Application of differential programming for integrating physics knowledge into HEP neural 
networks: 
• NDIVE can be integrated into future end-to-end b-tagging algorithms, explicitly reintroducing 

vertex geometry. 
• Part of wider application of differentiable programming to HEP!
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Backup



Features of b-jets
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These characteristics result in specific signatures 
we can look for to identify b-jets.

CERN Data Science Seminar by Sam Van Stroud

https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf


Inclusive SV algorithm (“SV1”)

• Finding strategy: 
• Find all displaced 2-track vertices within the jet ( ) 
• Remove all vertices with di-track mass compatible with KS, Lambda decay or photon conversion 
• Remove all vertices in correspondence of pixel layers (likely from material interactions) 

• Using only tracks from any of the non-vetoed 2-track vertices, form a single inclusive 
secondary vertex. 

• Combine variables following variables into a 3D likelihood function: 
• Invariant mass at vertex 
• Number of non-vetoed 2-track vertices 
• Energy fraction of tracks at vertex wrt all tracks in jet

χ2
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Track parameterisation
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R

P

⃗d0 ⃗ptrk
ϕP

y

x z

ρϕ

R

P
z0

θ0

Tracks described by five parameters and a reference point 
(typically the origin), using a perigee representation: 

 
 

 
 

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature



Track extrapolation
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Generic position V along the track trajectory parameterised by 
considering the track’s perigee representation wrt a reference R: 

 

 

 

xV = xP + d0 cos (ϕ +
π
2 ) + ρ [cos (ϕV +

π
2 ) − cos (ϕ +

π
2 )]

yV = yP + d0 sin (ϕ +
π
2 ) + ρ [sin (ϕV +

π
2 ) − sin (ϕ +

π
2 )]

zV = zP + z0 −
ρ

tan(θ) [ϕV − ϕ] x

y

R

P

T
V

d0

d′ 0



Deep Implicit Layers (I)

• Explicit vs implicit layers 
• An explicit layer with input  and output  corresponding to the application of some 

explicit function : 

 

• An implicit layer would instead be defined via a joint function of both  and , where 

the output of of the layer  is required to satisfy some constraint such as finding the 
root of an equation: 

x z
f

z = f (x)
x z

z

Find z such that g(x, z) = 0
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http://implicit-layers-tutorial.org



Deep Implicit Layers (II)

• Differentiable optimisation as a layer 
• Implicit differentiation to compute gradients of solutions of implicit functions, 

optimisations or differential equations. 

Implicit layers have the notably advantage that we can use the implicit function theorem 
to directly compute gradients at the solution point of these equations, without having to 
store any intermediate variables along the way. This vastly improves the memory 
consumption and often the numerical accuracy of these methods, providing another 
notable benefit for implicit models in the setting of deep learning in particular.
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http://implicit-layers-tutorial.org



Dataset
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