

Working With Waveforms

In this talk we illustrate tools for digital signal processing through application in several recent publications

Sebastian White LIP-IDTM Sept. 13, 2023

Bibliography/Topics

• High Gain (aka Deep Diffused) Avalanche Diodes

"Deep diffused APDs for charged particle timing applications.....", Vignali et al,NIM v 949, 162930 (Jan 2020)

• "PICOSEC" ~20 picosecond MPGD based MIP timing

See Florian Brunbauer, these proceedings (and NIM articles referenced therein).

• Single Delay Line Shaping applied to SiPMs w 10's of GHz Dark Count Rate

S. White and A. Heering, "Digitized waveform signal processing for fast timing: an application to SiPM timing in the presence of dark *count noise*", 2020 *JINST* **15** C04036

• Use of CADENCE based Xfer Func's to mock up ASIC performance with beam data

S. White, "Virtual ASICs with Real Data", CPAD 2021, https://arxiv.org/pdf/1712.05256.pdf

• A new tool to mitigate time jitter from Dark Count noise

"Signal processing to reduce dark noise impact in precision timing", S. White: 2023 JINST 18 P07051

• Relating TOFHIR2C noise to effectiveness of above tool Work in progress...

In this talk we discuss all but 1st 2 topics

necessity= mother of invention....

• In 2011 I moved to CERN==> Crispin Williams' Lab • Had written paper in 2007 advocating 4D vertexing for pileup mitigation • => R&D on fast timing sensors

Sebastian White, LIP IDTM

+ prior work w. Wolfram-> "Mathematica for data"

Erich G. working on input protection

Sebastian White, LIP IDTM

Lecroy down the road in Meyrin and very generous. Former collaborator AI. Rothenberg wrote their software

High Gain AD and PICOSEC shared resources: tracking, MCP-PMTs, and scopes

Typically all timing analysis from 1 to 2.5 GHz BW, 20 GSa/s or greater scopes.

Recently working w Eric Delagnes & Dominique Breton for PICOSEC.

A Few applications: Discrete Fourier Transform-

After the fact removal of pickup noise from rf environment @ C. Joram lab at CERN "brick wall filter"

Sebastian White, LIP IDTM

Remote inspection of Noise Characteristics (CERN<-> CIVIDEC)

Same plot (ie noise spectrum)^{1me: 20:01:23} verified by E. Griesmayer(Cividec)- SPICE

SiPM waveforms before/after Digital "Brick Wall Filter"

40

-

Signal Processing to deal w Pileup and Dark Count Noise

Lab Measurements of SiPM Time Resolution vs. Irradiation

^bNotre Dame

for dt= 0.25, 0.5, 1.0 nanosec

polation fit	
	۰
20	25

Sebastian White, LIP IDTM

Illustrative Application: How accurately does ASIC capture full Q?

Demonstrates that Q accuracy (for "Amplitude Walk Correction") of ~5% achieved for a real data set.

Now illustrate tool for DCR time jitter mitigation.

• We will find a timing correction from redundancy of slope and Q.

Solid Curve (signal model) \rightarrow

Sebastian White, LIP IDTM

Joram Lab laser data from earlier paper w A.Heering: start from models.

$$F[t] = A \times \left(\frac{t - t_0}{\tau}\right)^n \times Exp\left[-\frac{(t - t_0)}{\tau}\right]$$

Key to dual threshold effectiveness-> baseline subtraction

Sebastian White, LIP IDTM

In simple model correlation persists up to high threshold

The noise spectrum+ external HF noise (above proper bandpass)

Even at low power HF noise has a big effect

In our example it would short circuit timing mitigation:

Without 600 MHz low-pass filter

Sebastian White, LIP IDTM

With 600 MHz low-pass filter

Does Delay Line Shaping (a la TOFHIR) reduce effectiveness? NO

Model Signal+Real Noise

Sebastian White, LIP IDTM

Full Laser data+Real Noise

No less effective in LYSO/SiPM FNAL beam data than Laser

As we have seen before.

Role of electronic noise in the workflow (in following-> impact in 2 steps). Start from the usual steps in the workflow

1) record time of threshold crossing (TOFHIR T1) 2) Apply a correction to T1 time to give "Time of Arrival (TOA)", using Q.

This "Amplitude Walk Correction" is main correction to the TOA and f[Q] can, typically, just be derived from calibration data. That is why CF rather than, ie, t_0 .

- Effective 'cause we spec'd Q error to be <5% (and this confirmed in lab).
- We could have, equivalently, used a measurement of $dV^{signal}/dt|_{@T1}$ to construct walk correction.

However precision of dV^{signal}/dt[@] T1 was not spec'd or measured (but discussed below).

3) at this point note contribution of electronic noise to the TOA. -> enters through usual jitter:

dT1~Vnoise_{rms}/(dVsignal/dt@_T1) (from noise rms)

And note that just rms noise that enters- not the noise power spectrum.

Sebastian White, LIP IDTM

-> T_{ConstantFraction}=T1*f[Q]

Role of electronic noise in the workflow (in following-> impact in 2 steps). Next we encounter DCR and ask if another correction analogous to "Amplitude" walk correction" can be found

Figure 9. The same analysis was applied to testbeam data of a LYSO/SiPM model detector for the CMS Barrel Timing upgrade [3] in a 120 GeV proton beam at FNAL. The correlation between slope and time shift is seen clearly using highly radiation damaged SiPMs with DCR=13 GHz (right panel) whereas, as expected, time spread and slope spread were insignificant when using undamaged SiPMs (left panel).

• S. White, "Signal processing to reduce dark noise impact in precision timing", Journal of Instrumentation, Volume 18, July 2023, url = https://dx.doi.org/10.1088/1748-0221/18/07/P07051 Sebastian White, LIP IDTM 19

Role of electronic noise in the workflow (in following-> impact in 2 steps). How does electronic noise enter slope jitter?

4b) recall that in TOFHIR2C measurements actually on <u>current</u> but use V<->I(muAmps)

4c) How does noise enter slope measurement?

In what follows we will try to derive observed de-correlation in TOFHIR using what is known about TOFIR noise.

Sebastian White, LIP IDTM

4a) for data with given Q expect to see, on average, a signal slope of $\langle dV^{signal}/dt |_{@T1}$.

- "Slope"~dV/dt|@ T1 = dVsignal/dt|@ T1 + dVnoise/dt|@ T1
- (from noise slope-> frequency content important)

Calculating slope jitter due to noise:

1)Overall (integrated over f) rms noise: various lab measurements-> ~ 0.4 ->this provides normalization of power spectrum microAmp. 2) Power spectrum: from xfer function to T1 discriminator input

Or directly from CADENCE calculation of power spectrum at T1 input

->Construct random waveforms in time-domain Using Sqrt[PowerSpectrum] to generate Discrete FT

Summary

 Various lab and testbeam studies of Digitized waveforms have been a useful complement to TOFHIR simulations with CADENCE and TOFHIR TB/Lab data. • Potential further improvement in time jitter @high DCR w. TOFHIR 2 thresholds. • I presented tools to relate its effectiveness to understanding of internal noise.

What is happening?

What is happening is TIME. "In this massively deluded cauldron of a world where the sun is fire and the days and nights fuel that fire and the months and seasons the ladle of the cauldron"⁽¹⁵⁾ Time cooks creatures. THAT's what's happening.

kā ca vārtika?

asmin mahāmohamaye katāhe suryāgninā rātri divendhanena māsartudarvī parighattanena bhūtāni kālah pacatīti vārta

Sebastian White, LIP IDTM

Sanskrit equivalent of The Riddle of the Sphinx: **Riddle contest between a Yaksha and Yudhishthira**

> Q:What is happening? A: What is happening is TIME.

अस्मिन् महामोहमये कटाहे सूर्याग्निना रात्रिदिवेन्धनेन । मासर्तुदर्वीपरिघट्टनेन भूतानि कालः पचतीति वार्ता ॥ ९९

thanks to Milind Diwan for this reference

