PPS Upgrade: Fast timing with Silicon Detectors Cristóvão B. da Cruz e Silva

PPS and HL-LHC

- The PPS consists of two spectrometer arms, each contains:
 - Tracker to measure the proton trajectory
 - Timing system to determine time of flight (difference between the two arms indicates the z position of the primary vertex)
- Timing from PPS can be compared to/combined with timing of central detector
- The HL-LHC will have a significantly increased pileup, up to 200 pileup events:
 - Timing is critical in order to handle the pileup background

Figure 47: Time resolution required per spectrometer arm to resolve the mean vertex distance at a position z (in units of the longitudinal vertex width $\sigma_{\rm v}$) from the IP centre. Four different pileup multiplicities are shown: $\mu = 50$ (LHC Run 2), 100, 140 (nominal HL-LHC performance), and 200 (ultimate HL-LHC performance). Left: for standalone PPS timing. Right: combining the PPS timing with the MTD system, selecting a time-slice of $\pm 50 \,\mathrm{ps}$ around the central bunch crossing time.

PPS and HL-LHC

- During LS3 the beampipe and magnets around CMS will be redesigned \bullet \bullet
 - The current PPS detector will be removed
- Four different locations in the new design have been identified for possible PPS \bullet stations:
 - 196 meters from the interaction point lacksquare
 - 220 meters from the interaction point
 - 234 meters from the interaction point

PPS Timing Detectors

- Different detector technologies are being considered:
 - LGAD Reuse the detector being developed for the Endcap Timing Layer, both the sensor (Low Gain Avalanche Diode) and the readout chip (ETROC)
 - Diamond Used in the current PPS detector, great radiation hardness but no readout for HL-LHC rates and required amount of channels
 - 3D Pixels Still in R&D, have been shown to allow for simultaneous tracking and timing with one sensor

- Simulated particle fluence after 1 fb⁻¹ of data from diffractive processes (nb: background not included)
- HL-LHC beam at coordinate (0, 0)
- Red line marks the approximate edge of the sensors during physics runs
- Very large gradient that the sensors must cope with
 - Sensor pad size affects channel occupancy \rightarrow column of pads closest to the beam has to be split, compared to the ETL design, in order to keep the detector efficiency high

Plots produced with raw data provided by M. Deile

		10 ¹⁵	ر ت
-		10 ¹⁴	/ cm
_		10 ¹³	<u>a</u>
-		10 ¹²	₽
		10 ¹¹	
-		10 ¹⁰	
		10 ⁹	
-	-	10 ⁸	
-		10 ⁷	
_	_	10 ⁶	
-		10 ⁵	
-		10 ⁴	
-		10 ³	
		10 ²	
-		10	
40 x [mm]		1	

4-Split LGAD Sensor Proton Flux Station 234

10 -	63 62 60	79	95	111	127	143	159	175	191	207	223	239	255
	50 50 56	78	94	110	126	142	158	174	190	206	222	238	254
	34	77	93	109	125	141	157	173	189	205	221	237	253
	30 48	76	92	108	124	140	156	172	188	204	220	236	252
5 -	46	75	91	107	123	139	155	171	187	203	219	235	251
	43 40	74	90	106	122	138	154	170	186	202	218	234	250
	10 17 17	73	89	105	121	137	153	169	185	201	217	233	249
0	14 12	72	88	104	120	136	152	168	184	200	216	232	248
Ĭ		71	87	103	119	135	151	167	183	199	215	231	247
	24 24	70	86	102	118	134	150	166	182	198	214	230	246
	23 26	69	85	101	117	133	149	165	181	197	213	229	245
-5 -		68	84	100	116	132	148	164	180	196	212	228	244
	14	67	83	99	115	131	147	163	179	195	211	227	243
	붷	66	82	98	114	130	146	162	178	194	210	226	242
	4004	65	81	97	113	129	145	161	177	193	209	225	241
10 -		64	80	96	112	128	144	160	176	192	208	224	240
	-10				-5			()		5		10

Fill Factor

- For a "Standard LGAD", the interpad distance (space between pads) is approximately 100 µm

 - This gives a standard ETL LGAD a fill factor of approximately 85% • With PPS segmentation, the overall fill factor is ~81%, but the fill factor of the first column is ~64%
- A Trench Isolated LGAD can achieve interpad distances as low as 10 μm The PPS segmented LGAD can reach an overall fill factor of ~98% and a fill factor of the first column of ~96%
- Reducing the interpad spacing is fundamental to achieve good efficiency in PPS

- exceeds LGAD radiation tolerance (~2E15 neq \approx 4E15 p/cm²):
 - Station 196: 5.47E14 p/cm²
 - Station 220: 3.72E15 p/cm²
 - Station 234: 2.29E16 p/cm²
 - Station 420: 6.35E15 p/cm²

Peak PPS dose (assuming diffractive flux maps) over 1 year of HL-LHC

Shift sensor vertically throughout the year to mitigate radiation damage

Sensor Shifts & Dose

Station 234

LGAD Irradiation

- Non uniform irradiation profile and dose is the largest challenge for PPS → Study LGAD performance with non-uniform irradiation
- LGAD samples from FBK-UFSD4 production
- Each sample is a matrix of 5x5 pixels, each pixel is a square with 1.3 mm side
- Samples have different characteristics:
 - Guard ring design (GR3_0 or GR3_1)
 - LGAD Interpad design (T9 or T10)

Sample Name	Reference	Irradiation	
PPS_LGAD_01	FBK UFSD4 W18 GR3_1 T9 6-4	1E16 p/cm ²	
PPS_LGAD_02	FBK UFSD4 W18 GR3_1 T10 6-4	5E15 p/cm ²	
PPS_LGAD_03	FBK UFSD4 W18 GR3_0 T9 6-4	NA	
PPS_LGAD_04	FBK UFSD4 W18 GR3_0 T10 6-4	1E16 p/cm ²	
PPS_LGAD_05	FBK UFSD4 W18 GR3_0 T9 4-6	5E15 p/cm ²	

S: 1)

	GR3_0	GR3_1
T9	2	1
T10	1	1

Samples provided by Roberta Arcidiacono

Irradiation Profile

- Offset the sensor with respect to the beam in order to achieve an irradiation gradient
- Factor of ~10 with this size of sensor
- Irradiation performed at the CERN IRRAD facility

IV Curves of Pads in 1 Device

IV - Current vs Voltage FBK-UFSD4 W18 GR3_0 T9 4x6 - Temperature: 20.0 C; Run: PPS_LGAD_05_PixelScan

CV Curves of Pads in 1 Device

CV - Capacitance vs Voltage FBK-UFSD4 W18 GR3_0 T9 4x6 - Temperature: 20.0 C; Run: PPS_LGAD_05_PixelScan_CV

Legend --- Pixel 0 0 ---- Pixel 0 1 --- Pixel 1 1 ---- Pixel 2 2 ---- Pixel 3 3 ---- Pixel 4 4 ---- Pixel 4 0 ---- Pixel 0 4 40 50 60 Bias Voltage [V]

Preliminary Results

IV Curves of Pads in 1 Device

IV - Current vs Voltage FBK-UFSD4 W18 GR3_1 T10 6x4 - Temperature: -20.0 C; Run: GR3_1_T10

Post-Irradiation

Conclusion

- with known techniques
- performance with a laser setup
- radiation hard gain layer and PPS pad design

• PPS Upgrade for HL-LHC under R&D \rightarrow Non-uniform irradiation and large localized dose are the biggest challenges, some of which can be mitigated

 Measurement and analysis of non-uniformly irradiated samples is ongoing. Next steps, measure CV curves of irradiated samples and measure timing

Ongoing conversation with FBK for the production of TI LGADs with a

Backup

- Start by calculating the average expected occupancy (μ) for a single pad:
 - Particle fluence over 1 fb⁻¹ can be converted to particle fluence for each bunch crossing with:

- Place the pad centered at the position with maximum particle fluence on the sensor area (worst case scenario)
- Calculate the pad occupancy in two different scenarios:
 - Assume uniform fluence over the whole pad area equal to the maximum fluence (worst case scenario):
 - $\mu = \Phi_{\text{BXmax}} * A = \Phi_{\text{BXmax}} * I^2$ $x_{\text{edge}} + l$ • Integrate particle fluence map over the pad area: $\mu = \int_{x_{edge}} dx \int_{-l} dy \, \Phi(x, y)$

Sensor Pad Size

 $\Phi_{\rm BX} = 1.6 \ {\rm x} \ 10^{-12} \ \Phi_{\rm fb^{-1}}$

Sensor Pad Position

Sensor Pad Occupancy

- Uniform fluence scenario overestimates the occupancy (more evident at large pad sizes
- Occupancy, system deadtime and pileup probability are related
 - Pileup probability is the probability to see more than one proton in the same pad over the system deadtime, i.e. the event loss probability
 - Detector technology defines the deadtime, together with desired probability gives maximum pad size

Pad Size vs Deadtime vs Loss Probability

Station 196

Station 220

Station 196

Station 220

21

4-Split Loss Probability

Position (11.9, -3.5)

LGAD Pixel Naming

• Pixels are named according to their row and column:

41	42	43	44		
31	32	33	34		
21	22	23	24		
11	12	13	14		
0 1	02	03	04		
uard Ring Contacts					

- Each Pixel contains:
 - 1 Circular bump bonding pad
 - 1 Square wire bonding pad
 - 1 opening in metal layer for the laser
- Guard Ring Contacts: \bullet
 - Row of alternating bump bonding pads and wire bonding pads

CVIV Setup at CERN

- Setup to measure the I vs V and C vs V characteristic curves of silicon devices:
 - Precise source with measurement capabilities for providing the voltage 2x Keithley 2410 SourceMeter
 - Precise ammeter for measuring the current Keithley 6487 Picoammeter
 - LCR meter for measuring capacitance and conductance Agilent E4980A
- Chuck with probes for mounting the devices: ullet
 - Vacuum line, so the devices can be securely attached
 - Cooling loop goes through the chuck
 - Chuck is one of the contacts
 - 2 Probes provide additional contacts
- Chiller to provide cooling required for irradiated samples \bullet
- Source of "Dry Air" for flushing when cooling (avoid condensation)
- Dark metal box, serves as a Faraday Cage and avoids stray light
- Microscope for adjusting the probes

Measurement Procedure

- LGAD Sample is placed on chuck \bullet
- Probes are adjusted and made to contact the wire bonding pads:
 - Always use the 2nd wire bonding pad for the guard ring
- Make sure the "dry Air" is flowing ullet
- Close the box ullet
- Measure IV, CV (if these measurements are not done, wait enough ullettime for the gas to fully flush the box interior, ~ 10 minutes)
- Cool the setup to -20 C: cooling takes at least 15 minutes
- Measure IV, CV
- Warm the setup to 20 C: warming up takes at least 5 minutes

Bottom probe is contacting, Top probe is not contacting

IV Curves of Pads in 1 Device

IV - Current vs Voltage

FBK-UFSD4 W18 GR3_0 T9 4x6 - Temperature: 20.0 C; Run: PPS_LGAD_05_PixelScan

Temperature Effect - IV

IV - Current vs Voltage

FBK-UFSD4 W18 GR3_0 T10 6x4 - Pixel Row 4 Column 4; Run: PPS_LGAD_04_Pixel44_Temperature

Temperature Effect - CV

CV - Capacitance vs Voltage

FBK-UFSD4 W18 GR3_0 T10 6x4 - Pixel Row 4 Column 4; Run: PPS_LGAD_04_Pixel44_CV_Temperature

IV Across Devices

IV - Current vs Voltage

Pixel Row 0 Column 0 - Temperature: -20.0 C; Run: Pixel00_LowTemp

Bias Voltage [V]

Legend

CV Across Devices

CV - Capacitance vs Voltage

Pixel Row **0** Column **0** - Temperature: **-20.0 C**; Run: Pixel00_LowTemp_CV

- Extract some relevant parameters from the CV curve:
 - Transform C vs V plot into 1/C² vs V plot
 - Fit each section with a straight line
 - The points where the straight lines intersect define the Gain Layer Depletion Voltage (V_{gl}) and the Full Bulk Depletion Voltage (V_{fd})

Feature Extraction

Feature Extraction

Bias Voltage [V]

Full Depletion Voltage vs Device

Full Bulk Depletion Voltage Evolution

Pixel Row 4 Column 4 - Temperature: -20.0 C; Run: test

Sample

Full Bulk Depletion Voltage Evolution

FBK-UFSD4 W18 GR3_0 T9 4x6 - Temperature: 20.0 C; Run: PPS_LGAD_05_PixelScan_CV

FBK-UFSD4 W18 GR3_0 T9 4x6 - Temperature: 20.0 C; Run: PPS_LGAD_05_PixelScan_CV

Gain Layer Depletion Voltage Volution

