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PPS and HL-LHC
• The PPS consists of two spectrometer arms, each contains:

• Tracker to measure the proton trajectory

• Timing system to determine time of flight (difference between the two 

arms indicates the z position of the primary vertex)


• Timing from PPS can be compared to/combined with timing of central 
detector


• The HL-LHC will have a significantly increased pileup, up to 200 pileup 
events:

•  Timing is critical in order to handle the pileup background
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PPS Timing for HL-LHC

3 Taken from CMS Note 2020/008 (arXiv 2103.02752)



PPS and HL-LHC
• During LS3 the beampipe and magnets around CMS will be redesigned

• The current PPS detector will be removed


• Four different locations in the new design have been identified for possible PPS 
stations:

• 196 meters from the interaction point

• 220 meters from the interaction point

• 234 meters from the interaction point

• 420 meters from the interaction point (more challenging position since it needs a 

special mechanical design -> possibly staged construction)
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PPS Timing Detectors
• Different detector technologies are being considered:


• LGAD - Reuse the detector being developed for the Endcap Timing Layer, 
both the sensor (Low Gain Avalanche Diode) and the readout chip 
(ETROC)


• Diamond - Used in the current PPS detector, great radiation hardness but 
no readout for HL-LHC rates and required amount of channels


• 3D Pixels - Still in R&D, have been shown to allow for simultaneous 
tracking and timing with one sensor


•
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PPS Particle Fluence Maps

6 Plots produced with raw data provided by M. Deile

• Simulated particle fluence after 1 fb-1 of data 
from diffractive processes (nb: background not 
included)


• HL-LHC beam at coordinate (0, 0)


• Red line marks the approximate edge of the 
sensors during physics runs


• Very large gradient that the sensors must cope 
with

• Sensor pad size affects channel occupancy 
→ column of pads closest to the beam has 
to be split, compared to the ETL design, in 
order to keep the detector efficiency high



4-Split LGAD Sensor
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Fill Factor
• For a “Standard LGAD”, the interpad distance (space between pads) is 

approximately 100 µm


• This gives a standard ETL LGAD a fill factor of approximately 85%


• With PPS segmentation, the overall fill factor is ~81%, but the fill factor of 
the first column is ~64%


• A Trench Isolated LGAD can achieve interpad distances as low as 10 µm


• The PPS segmented LGAD can reach an overall fill factor of ~98% and a fill 
factor of the first column of ~96%


• Reducing the interpad spacing is fundamental to achieve good efficiency in 
PPS

8



Peak Dose
• Peak PPS dose (assuming diffractive flux maps) over 1 year of HL-LHC 

exceeds LGAD radiation tolerance (~2E15 neq ≅ 4E15 p/cm2):


• Station 196: 5.47E14 p/cm2


• Station 220: 3.72E15 p/cm2


• Station 234: 2.29E16 p/cm2


• Station 420: 6.35E15 p/cm2


• Shift sensor vertically throughout the year to mitigate radiation damage
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Sensor Shifts & Dose

10

Station 234



LGAD Irradiation
• Non uniform irradiation profile and dose is the largest challenge for PPS → Study 

LGAD performance with non-uniform irradiation
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GR3_0 GR3_1

T9 2 1

T10 1 1

Sample Name Reference Irradiation

PPS_LGAD_01 FBK UFSD4 W18 GR3_1 T9 6-4 1E16 p/cm2

PPS_LGAD_02 FBK UFSD4 W18 GR3_1 T10 6-4 5E15 p/cm2

PPS_LGAD_03 FBK UFSD4 W18 GR3_0 T9 6-4 NA

PPS_LGAD_04 FBK UFSD4 W18 GR3_0 T10 6-4 1E16 p/cm2

PPS_LGAD_05 FBK UFSD4 W18 GR3_0 T9 4-6 5E15 p/cm2

Samples provided by Roberta Arcidiacono

• LGAD samples from FBK-UFSD4 production

• Each sample is a matrix of 5x5 pixels, each pixel is a square 

with 1.3 mm side

• Samples have different characteristics:

• Guard ring design (GR3_0 or GR3_1)

• LGAD Interpad design (T9 or T10)



Irradiation Profile

• Offset the sensor with respect to the 
beam in order to achieve an 
irradiation gradient


• Factor of ~10 with this size of sensor


• Irradiation performed at the CERN 
IRRAD facility
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IV Curves of Pads in 1 Device
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Pre-Irradiation

Preliminary Results



CV Curves of Pads in 1 Device
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Pre-Irradiation

Preliminary Results



IV Curves of Pads in 1 Device
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Post-Irradiation

Preliminary Results



Conclusion

• PPS Upgrade for HL-LHC under R&D → Non-uniform irradiation and large 
localized dose are the biggest challenges, some of which can be mitigated 
with known techniques


• Measurement and analysis of non-uniformly irradiated samples is ongoing. 
Next steps, measure CV curves of irradiated samples and measure timing 
performance with a laser setup


• Ongoing conversation with FBK for the production of TI LGADs with a 
radiation hard gain layer and PPS pad design
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Backup



Sensor Pad Size
• Start by calculating the average expected occupancy (𝝁) for a single pad:


• Particle fluence over 1 fb-1 can be converted to particle fluence for each 
bunch crossing with:


• Place the pad centered at the position with maximum particle fluence on 
the sensor area (worst case scenario)


• Calculate the pad occupancy in two different scenarios:


• Assume uniform fluence over the whole pad area equal to the maximum 
fluence (worst case scenario):


• Integrate particle fluence map over the pad area:
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𝛷BX = 1.6 x 10-12 𝛷fb-1

𝜇 = 𝛷BXmax * A = 𝛷BXmax * l2



Sensor Pad Position
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Sensor Pad Occupancy
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• Uniform fluence scenario overestimates 
the occupancy (more evident at large pad 
sizes


• Occupancy, system deadtime and pileup 
probability are related

• Pileup probability is the probability to 

see more than one proton in the same 
pad over the system deadtime, i.e. the 
event loss probability


• Detector technology defines the 
deadtime, together with desired 
probability gives maximum pad size



Pad Size vs Deadtime vs Loss Probability
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4-Split Loss Probability
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• Only one with Loss 
probability < 10%



LGAD Pixel Naming
• Pixels are named according to their row and column:

0 0 0 1 0 2 0 3 0 4

1 0 1 1 1 2 1 3 1 4

2 0 2 1 2 2 2 3 2 4

3 0 3 1 3 2 3 3 3 4

4 0 4 1 4 2 4 3 4 4

Guard Ring Contacts
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• Each Pixel contains:

• 1 Circular bump bonding pad

• 1 Square wire bonding pad

• 1 opening in metal layer for 

the laser

• Guard Ring Contacts:


• Row of alternating bump 
bonding pads and wire 
bonding pads



CVIV Setup at CERN
• Setup to measure the I vs V and C vs V characteristic curves of silicon devices:


• Precise source with measurement capabilities for providing the voltage - 2x Keithley 2410 SourceMeter


• Precise ammeter for measuring the current - Keithley 6487 Picoammeter


• LCR meter for measuring capacitance and conductance - Agilent E4980A


• Chuck with probes for mounting the devices:


• Vacuum line, so the devices can be securely attached


• Cooling loop goes through the chuck


• Chuck is one of the contacts


• 2 Probes provide additional contacts


• Chiller to provide cooling - required for irradiated samples


• Source of “Dry Air” for flushing when cooling (avoid condensation)


• Dark metal box, serves as a Faraday Cage and avoids stray light


• Microscope for adjusting the probes
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Measurement Procedure
• LGAD Sample is placed on chuck


• Probes are adjusted and made to contact the wire bonding pads:


• Always use the 2nd wire bonding pad for the guard ring


• Make sure the “dry Air” is flowing


• Close the box


• Measure IV, CV (if these measurements are not done, wait enough 
time for the gas to fully flush the box interior, ~10 minutes)


• Cool the setup to -20 C: cooling takes at least 15 minutes


• Measure IV, CV


• Warm the setup to 20 C: warming up takes at least 5 minutes
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Bottom probe is contacting, Top probe is not contacting



IV Curves of Pads in 1 Device

26



Temperature Effect - IV
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Temperature Effect - CV
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IV Across Devices
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CV Across Devices
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Feature Extraction

• Extract some relevant parameters from the CV curve:


• Transform C vs V plot into 1/C2 vs V plot


• Fit each section with a straight line


• The points where the straight lines intersect define the Gain Layer 
Depletion Voltage (Vgl) and the Full Bulk Depletion Voltage (Vfd)
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Feature Extraction
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Full Depletion Voltage vs Device
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Full Depletion Voltage vs Pixel
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Gain Layer Depletion Voltage vs Pixel


