Precise timing with gaseous detectors

Florian M. Brunbauer (CERN, PICOSEC MM)

florian.brunbauer@cern.ch

Innovative Detector Technologies and Methods, September 13, 2023

Outline

Precise timing requirements

Overcoming timing limitations in gaseous detectors

Precise timing with PICOSEC Micromegas

- Detector concept & timing performance
- Robust photocathodes and resistive Micromegas
- Multi-pad detector modules
- Scalable readout electronics

Precise timing needs

Good timing resolution is highly important for future applications of gaseous detector

Identified needs for applications in muon systems, PID detectors, calorimeters and TOF systems in ECFA Detector R&D roadmap for future facilities

Varying requirements for timing resolutions from tens of ps to sub-ns

2035-

		DRDT	< 2030	2030-2035	2055- 2040-2	2045
	Rad-hard/longevity	1.1	•			
Muon system	Time resolution	1.1		i i i		
Proposed technologies: RPC, Multi-GEM, resistive GEM, Micromegas, micropixel Micromegas, µRwell, µPIC	Fine granularity	1.1	• •			
	Gas properties (eco-gas)	1.3				
	Spatial resolution	1.1	• •			
	Rate capability	1.3	• •			
	Rad-hard/longevity	1.1				
Inner/central	Low X _o	1.2				
tracking with PID	IBF (TPC only)	1.2	• •			
Proposed technologies:	Time resolution	1.1				
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3				
layers of MPGD, straw chambers	dE/dx	1.2	•			
	Fine granularity	1.1				
	Rad-hard/longevity	1.1				
Preshower/	Low power	1.1				
Calorimeters	Gas properties (eco-gas)	1.3				
Proposed technologies:	Fast timing	1.1				
GEM, µRwell, InGrid (integrated	Fine granularity	1.1				
Micromegas grid with pixel readout), Pico-sec, FTM	Rate capability	1.3				
	Large array/integration	1.3				
	Rad-hard (photocathode)	1.1				
Particle ID/TOF	IBF (RICH only)	1.2				
Proposed technologies:	Precise timing	1.1	•			
RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3				
MRPC, PICOSEC, FTM	dE/dx	1.2				
	Fine granularity	1.1				
	Low power	1.4				
TDC (annual da annu	Fine granularity	1.4	• •	•		
IPC for rare decays	Large array/volume	1.4	• •	•		
Proposed technologies: TPC+MPGD operation (from very low to very high pressure)	Higher energy resolution	1.4	•			
	Lower energy threshold	1.4				
	Optical readout	1.4	– – –	•		
	Gas pressure stability	1.4				
	Radiopurity	1.4	•			

Must happen or main physics goals cannot be met

Important to meet several physics goals

Desirable to enhance physics reach

R&D needs being met

Precise timing in DRD1 WP7: Timing Detectors

Work package currently being defined in context of future collaboration

Clustering groups working on common R&D developm detectors for precise timing applications

Two WP projects:

- High-rate, high-granularity precise timing with M
- High-rate, large, precise timing (M)RPC

Defined tasks and deliverables for 2024-2026 Institutes participate with existing FTE and non-FTE resources and/or intend to request additional resources

Participation of >20 institutes

https://drd1.web.cern.ch/wp/wp7

ure DRD1	Tasks:
	 T1: Optimize the amplification technology towards large-area
	detectors
	T2: Enhance timing performance
	T3: Enhance rate capability
nents of daseous	 T4: Spatial resolution and readout granularity
ionico or gaoooao	 T5: Stability, robustness and longevity
	 T6: Material studies
	 T7: Gas studies for precise timing applications
	 T8: Modelling and simulation of timing detectors
	 T9: Readout electronics for precise timing
PGDs	 T10: Precision mechanics and construction techniques
	T11: Common framework and test facilities for precise timing R&D

DRD1 WP 7 – Timing Detectors

Description of work package

The role of detectors featuring timing capability will become crucial in the future experiments in High Energy Physics (HEP) field as well as in nuclear and hadronic physics. In many of these future experiments the time information will play a major role in studying the interaction of particles in more precise way by providing 4D nformation. Their role has recently been emphasized in the LHC upgrade towards high luminosity where high pileup configurations can only be mitigated thanks to a precise time information.

The long-term plans of this projects aims to match the requirements highlighted in th 2021 ECFA detector research and development roadmap. The relevant parts in terms of facilities requirements and recommendation are reported here. The proposed activities are covering the Detector Research and Development Themes DRDT 1.1 (Improve time and spatial resolution for gaseous detectors with long-term stability) and DRDT 1.3 (Develop environmentally friendly gaseous detectors for very large areas with high-rate capability).

This work package contains two projects:

- WP7 Project A High-rate, high-granularity precise timing with MPGDs WP7 Project B - High-rate, large, precise timing (M)RPC

The 2021 ECFA detector research and development roadmap.

ECFA Detector R&D Roadmap Process Group. CERN-ESU-017. CERN, 2020, p. 248. DOI: 10.17181/CERN.XDPL.W2EX

Main drivers from the facilities

Muon systems: A new generation of fast-timing GDs based on glass RPC, Multi-Gap RPC (MRPC), or fast timing MPGD (FTM) [Ch1-26], [Ch1-27] and PICOSEC [Ch1-28] are being developed, with a goal to achieve timing resolution of O(100/ps) and to reject off-time BIB hits. The main challenges at future facilities, particularly beyond 2030. include large area coverage with precision timing information (DRDT 1.1) to ensure correct track-event association, and the ability to cope with large particle fluxes using ivironmentally friendly gas mixtures (DRDT 1.3). Figure 1.2 summarises the main facilities, the proposed technologies to address the main challenges, and the most stringent conditions expected in muon systems.

ast picosecond-timing information with technologies like MR PICOSEC and FTM can be used to resolve the development of hadron showers, resulting in a smaller "confusion term" and to improve jet energy resolution in hadronic calorimeters.

Photon Detection: Three generations of gaseous photon detectors have been developed: the GDs with converting vapours included in the gas mixture, open geometry MWPC with solid state CsI-photocathodes, and MPGD-based detectors with Csl-photocathodes. This historical development matches the need to provide progressively better solutions to the challenging requirements in this field, namely: (i) to reduce the photon feedback generated in the multiplication process which leads to spurious signals; (ii) to reduce the IBF rate because the ion bombardment destroys the proportional chamber and limits the lifetime of the detector (R&D line in common with TPC needs, DRDT 1.2) and (iii) to improve the detector performance in term of spatial and time resolution, along with fast response in order to open the way to high rate capabilities and precision measurements (DRDT 1.1)

Time of Flight System

4

Timing limitations of gaseous detectors

Conventional gaseous detectors

Ionisation of gas in active volume

Primary electrons produced by ionisation along particle trajectory in drift region

Drift distance differences on the order of millimetres → Timing jitter of ≈ ns

Schematic not drawn to scale

Timing with (M)RPC

- Hundreds of ps achieved with RPCs
- Tens of ps with MRPCs

Cluster statistics, multiplication in gaps and noise contributions limited achievable timing resolution

Developments to improve timing resolution:

- Increased number of gaps
- Smaller gaps to operate at higher electric fields
- Thinner electrodes for increased SNR •
- Low-noise FEE ٠

→ New developments in timing RPCs, A. Blanco

→ Eco-friendly Resistive Plate Chambers for HL-LHC and beyond, M. Abbrescia

https://indico.cern.ch/event/999799/

Timing limitations of gaseous detectors

Conventional gaseous detectors Ionisation of gas in active volume

 \rightarrow Timing jitter of \approx ns

MPGD precise timing detectors: PICOSEC Micromegas

Cherenkov light emission + photocathode or solid secondary converter layer

Primary electrons at well-defined location & time
→ Timing jitter of ≈ tens of ps

Schematic not drawn to scale

PICOSEC detection concept Precise timing with Micromegas

Gas mixture: 80% Ne + 10% C₂H₆ + 10% CF₄ at ambient pressure

Schematic not drawn to scale X. Wang et al., Study of DLC photocathode for PICOSEC detector, RD51 collaboration meeting, October 2018

PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector J. Bortfeldt et. al. (RD51-PICOSEC collaboration), NIM A (903), 2018, <u>https://doi.org/10.1016/j.nima.2018.04.033</u>

PICOSEC detection concept Precise timing with Micromegas

Induced signals are recorded from anode pads, amplified and digitised Rising edge of fast electron peak is used for timing measurements with CFD to account for time walk

Measurements of timing performance

Achievable timing resolution is measured with pulsed laser for single photoelectron signals and in test beam campaigns for Minimum Ionising Particle (MIP) timing response

Laser tests

Pulsed laser at IRAMIS facility (CEA Saclay)

Fast photodiode (<5 ps resolution) as **timing reference**.

Detailed detector response studies in well-controlled conditions: direct production of **single photoelectrons** at photocathode.

L. Sohl, Overview on recent PICOSEC-Micromegas developments and performance tests, RD51 Mini-Week February 2020, <u>https://indico.cern.ch/event/872501/contributions/3726013/</u>

Schematic not drawn to scale

MIP test beam campaigns

150 GeV muons and pions from SPS

Two **MCP-PMTs** used as timing reference (<5 ps resolution)

Detector response to MIP (higher number of photoelectrons) and stability

Detector response

Time resolution depends primarily on e-peak charge

SAT depends on e-peak size:

- bigger pulses \rightarrow lower SAT
- higher drift field \rightarrow lower SAT

Location of first ionisation determines length of avalanche

Longer avalanches result in bigger e-peak charge SAT reduces with e-peak charge

Short pre-ionisation track \rightarrow larger e-peak charge \rightarrow better time resolution

K. Kordas, Progress on the PICOSEC-Micromegas Detector Development: towards a precise timing, radiation hard, large-scale particle detector with segmented readout, VCI2019 - The 15th Vienna Conference on Instrumentation https://indico.cern.ch/event/716539/contributions/3246636/

Avalanche length (μ m)

Towards a robust, large-area detector

Robustness

- Resistive Micromegas
- Robust photocathodes

Resistive Micromegas

Sufficiently high resistivity

- \rightarrow Protect Micromegas by limiting discharge energy
- \rightarrow Minimise impact on signal rising edge

Sufficiently low resistivity

- \rightarrow Avoid voltage drop resulting from current through resistive layer
- \rightarrow Exploit signal spreading for improved spatial resolution

L. Sohl, "Progress of the PICOSEC Micromegas concept towards a robust particle detector with segmented readout" 9th Symposium on large TPCs for low-energy rare event detection", 2018, https://indico.cern.ch/event/715651

Schematic not drawn to scale

Resistive elements (layer, discrete resistors) to limit destructive effect of discharges by limiting energy released

Simulation of signals induced in resistive detectors

Systematic study of **different** resistivities in multi-pad PICOSEC prototype

T. Papaevangelou, L. Sohl, CEA Saclay

Photocathode robustness

Robustness of photocathode is important to preserve QE and thus full detection efficiency and timing resolution during prolonged operation.

Standard PICOSEC photocathode: 18 nm CsI + 3 nm $Cr \rightarrow \approx 10 \text{ p.e.} / \text{MIP}$

Csl sensitive to humidity, ion backflow and sparks

Making Csl more robust

- Minimise effect of ion back flow while preserving QE
- Protection layers (MgF₂, LiF, graphene, ...)

Alternative photocathodes

- Inherently robust materials (with possible lower QE)
- Metallic, DLC, B₄C, nano diamonds, CVD diamond, GaN, ...

Csl + LiF₂, A. Breskin et al., 10.1109/23.467832

ND, L. Velardi et al.

B₄C, 10.1016/ j.jnucmat.2015.01.015

DLC, Y. Zhou et al

10.1016/

j.nima.2009.05.179

14

GaN crystal

Picosec detector modules

Scaling up to tileable modules for larger area coverage

Detector

Several variants of multi-channel PICOSEC prototypes in development / under test to address challenges associated with scaling to larger areas:

Integration

- Mechanics to preserve precise gaps
- Tileing & compact detector vessel

Electronics

- Signal sharing between pads
- Premplifiers and multi-channel digitisers

Single pad (2016) ø1 cm

10x10 module □ 1 cm

○ 1 cm

Large-area coverage Scaling up multi-channel PICOSEC

Multi-pad prototype was evaluated in test beam campaigns to study achievable time resolution for signal shared across multiple pads

Multi pad (2017) 0 1 cm

Large-area coverage Scaling up multi-channel PICOSEC

25 ps timing resolution for all pads

S. Aune et al., "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", NIM A (993), 2021, <u>https://doi.org/10.1016/j.nima.2021.165076</u>

Large-area coverage

Large-area coverage Scaling up multi-channel PICOSEC

Using tracking information, dependence of time resolution on hit location within pads (center vs. periphery) was observed:

→ non-uniform pre-amplification gap from mechanical deformation \rightarrow lower pre-amplification field \rightarrow lower SAT, wider distribution

Schematic hit locations not drawn to scale

Ideal, uniform preampfification gap

Observed, deformed preamplification gap

Schematic not drawn to scale

Measured mechanical deformation

Challenge for scaling up to larger detectors

- Non-planarity of PCB?
- Tension of Micromegas mesh?
- Bending from gas pressure?
- Bending from mechanical fixation?

S. Aune et al., NIM A (993), 2021, https://doi.org/10.1016/j.nima.2021.165076

PICOSEC 10cm x 10cm module

Uniform pre-amplification gap thickness crucial for timing performance ($<10\mu$ m across tens of cm)

- Stress from stretched micro mesh tension → rigid ceramic PCB
- Mechanic stress → decoupled Micromegas from housing
- with low spring force contacts

Substrate polishing and planarity survey during production at CERN MicroPattern Technologies workshop

Uniform detector gain across active area

Schematic not drawn to scale

Antonija Utrobičić

Difference added to the pad side of the board Planarity $< 10 \mu m$

X-coordinate

Picosec detector module

10cm x 10cm detector module prototype with 100 channels characterised in MIP test beam campaigns

Detector shows uniform response and different anode pads exhibit the same trend of signal-arrival-time as function of electron peak charge → universal time walk correction

Uniform time resolution response across 10cm x 10cm active area

Pads provide 20-25ps time resolution

Schematic not drawn to scale

Signals shared across multiple pads can be combined to achieve a combined time resolution of σ <30 ps

A. Kallitsopoulou, First results in signal sharing with multi-pad Picosec module prototypes, RD51 Collaboration Meeting Nov 2021, https://indico.cern.ch/event/1071632/contributions/ 4607166/

Signal sharing and spatial resolution

Signals can be **shared** across multiple readout pads by size of Cherenkov cone (3mm thick radiator -> 6mm diameter light cone)

Signal sharing can be increased by resistive layers with sufficiently low resistivity

Alternatively, **capacitive sharing** can be used to spread signals to multiple readout pads

https://indico.cern.ch/event/889369/ contributions/4042739/attachments/ 2119963/3567713/20201009 KG RD51 <u>Coll_Meeting.pdf</u>

Reconstructing hit position by COG in 7-pad resistive Picosec detector **Red**: true hit position (external tracker) Green: reconstructed hit position

Readout electronics

Require readout electronics solution that preserves excellent timing resolution and is scalable to 100s of channels for

Experience with different preamp circuits as input for new, optimised implementation for 100 channel PICOSEC modules

Readout electronics

Summary

Time resolution limitations of conventional gaseous detectors are overcome by **MRPCs** with multiple thin gaps or **PICOSEC Micromegas** utilising Cherenkov radiators and tens of ps resolution is achieved.

The **PICOSEC detection concept** overcomes timing limitations of gaseous detectors and achieves high timing precision of < 25 ps for MIPs.

Tileable 10x10 pad detector modules have been tested in MIP test beams and provide good timing resolution also for signals shared across pads.

Robust converter layers (photocathodes, secondary emitters), **resistive detectors** and scalable readout electronics are implemented for scaling detectors to larger detection areas.

Future perspectives

Amplification structure: optimised double/single gaps, mesh geometries/ technologies, μ RWELL

Spatial resolution: adjusting pad size, charge sharing (resistive / capacitive)

Secondary emitters: minimise material budget

Electronics: waveform digitisation vs. threshold based timing + integrated TDC

 \mathbf{e}

Detector response

Correlation of signal arrival time and pulse amplitude

Time resolution depends primarily on e-peak charge

J. Bortfeldt et. al. (RD51-PICOSEC collaboration), NIM A (903), 2018, https://doi.org/10.1016/j.nima.2018.04.033 https://indico.cern.ch/event/716539/contributions/3246636/

Signal arrival time (SAT) = <T_{e-peak}> **Time resolution = RMS (T**e-peak)

https://indico.cern.ch/event/716539/contributions/3246636/

Better time resolution for shorter pre-ionisation track \Rightarrow thinner gap

Alternative gases

Standard gas mixture: 80% Ne + 10% C₂H₆ + 10% CF₄ (COMPASS) gas) at ambient pressure

Investigation of alternative gas mixtures:

- Without CF4 •
- Non-flammable •

Standard mixture: Ne/ethane/CF4 (80/10/10%) 540/275V

Signal amplitude

Time resolution

D. Fiorina (INFN-PV)

Time resolution

Thin gap Picosec

Systematic tests of electric field configurations (drift / amplification fields), drift gaps and gas mixtures performed in laser facility

L. Sohl, et al., Single photoelectron time resolution studies of the PICOSEC-Micromegas detector, JINST Proc. of the 15th Topical Seminar on Innovative Particle and Radiation Detectors 2019, InPress (2020)

Smaller drift gap has better performance at same gain (Shorter drift time of the first electron)

Excellent timing performance confirmed in MIP test beam

<20ps timing resolution achieved with thin gap **Picosec** (≈120-170µm drift gap)

Csl

Single pad detector, sealed operation 82M resistive Micromegas, 150µm preampfification gap

2D amplitude map

Amplitude distribution

MCP

MM

0.7

MM fit

Efficiency map

Time resolution <20ps

Picosecond timing

Timing requirements on the level of tens of ps set by increasing luminosity and precision measurements. Examples of requirements at future facilities include:

Mitigate pileup in high multiplicity environments to distinguish event and mitigate background

Precise **Time-of-Flight (ToF)** measurements for Particle Identification (PID) at level of ≈20 ps/MIP can offer Pion/Kaon and Kaon/Proton separation for a wide momentum range

Tagged neutrino beam (time and flavour of tagging) for event-by-event decay measurements (ENUBET)

Photodetectors with high timing resolution

Timing detector requirements:

- Tens of ps timing precision
- Large surface coverage
- **Resistance against ageing**

J. Va'vra, https://dx.doi.org/10.1016/j.nima.2017.02.075

Embedding a PICOSEC Micromegas layer into an Electromagnetic Calorimeter (EMC)

 $K^+ \rightarrow \pi^0 e^+ v_e$

Detector stability Resistive Micromegas

Achieved time resolution close to PICOSEC bulk readout.

Stable operation in intense pion beam

Photocathode robustness

Alternatives tested during test beam campaigns

Photocathode	N _{ph.e.} / muon
Cr +18 nm Csl	10.4 ± 0.4
20 nm Cr	0.66 ± 0.13
6 nm Al	1.69 ± 0.01
10 nm Al	2.20 ± 0.05
Cr + 5nm diamond	1.85

Photocathode	N _{ph.e.} / muon
Csl + LiF	<1
Csl + MgF ₂	3.55 ± 0.08

DLC thickness	N _{ph.e.} / muon
2.5nm	3.7
5nm	3.4
7.5nm	2.2
10nm	1.7

Diamond-like carbon (DLC)

Robust material used for resistive electrodes and with promising properties as photocathode.

X. Wang, Recent photocathode and sensor developments for the PICOSEC Micromegas detector, MPGD 2019 https://indico.cern.ch/event/757322/contributions/3387110

Nanodiamond (ND) powder

Based on ≈ 100 nm diamonds particles deposited by spray technique, good QE

Velardi et al., <u>https://doi.org/10.1016/j.diamond.2017.03.017</u> C. Chatterjee et al 2020 J. Phys.: Conf. Ser. 1498 012008 https://iopscience.iop.org/article/10.1088/1742-6596/1498/1/012008/pdf

Photocathode robustness Limitations of Csl

Standard PICOSEC photocathode: 18 nm CsI + 3 nm Cr $\rightarrow \approx 10$ p.e. / MIP

CsI sensitive to humidity, ion backflow and sparks

Csl photocathode after spark

Ion backflow on Csl

Scanning electron microscope images of CsI morphology

Csl: deposited

After VUV exposure

Humidity exposure

https://doi.org/10.1016/j.nima.2009.05.179

Photocathode studies with ASSET

Tested **CsI** samples and protection layers produced by TFG lab (M. van Stenis, T. Schneider)

Measurements of B_4C , DLC and nano diamond photocathodes with visiting RD51 groups

Reflective/transmissive QE, ion bombardment degradation and VUV transparency measurements

M. Lisowska, ASSET - Photocathode characterisation device, RD51 Mini-Week February 2020, https://indico.cern.ch/event/872501/contributions/3726017

Sealed detector

10cm x 10cm detector module towards tiling with increased fill factor

Use of **low outgassing** components in detector (ceramic PCBs) and **sealing** techniques (brazing, electron beam welding) for minimal contamination and hermetic sealing.

- **Simplified services**: no need for continuous (flammable) ٠ gas flow
- **High fill-factor:** minimised dead area due to replacement • of o-rings with welds
- **Cleanness for photocathode** ٠

During assembly

3D model

Gas studies

Gas mixture (Neon-Ethane-CF4)	U _{Amp} (V)	U _{Drift} (V)	echarge (pC)	amplitude (mV)	σ _{tres.} (ps)
80-10-10	275	525	8.58 ± 0.13	166.3 ± 0.2	43.89 ± 1.00
89-2-9	255	445	1.69 ± 0.01	31.56 ± 0.44	112.15 ± 4.03
80-20-0	270	470	0.54 ± 0.01	21.61 ± 0.18	129.21 ± 6.03
85-15-0	310	395	0.74 ± 0.01	22.83 ± 0.21	113.48 ± 4.66
90-10-0	340	340	0.82 ± 0.01	20.72 ± 0.09	150.23 ± 3.17
95-5-0	230	375	1.13 ± 0.01	22.98 ± 0.16	181.09 ± 8.91

L. Sohl, Overview on recent PICOSEC-Micromegas developments and performance tests, RD51 Mini-Week February 2020, https://indico.cern.ch/event/872501/contributions/3726013/

Combining multi-pad hits

S. Aune et al., "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", NIM A (993), 2021, <u>https://doi.org/10.1016/j.nima.2021.165076</u>

$\chi^{2} = \sum_{i=1,4} \frac{\left(\left[t_{i} - \left\{ \langle SAT \rangle (R_{i}, \theta_{i}) - \langle SAT \rangle (R_{i}, 90^{\circ}) \right\} - \left\{ SL(Q) \right\} - \hat{t} \right] \right)^{2}}{\left(\operatorname{Re} s(Q_{i}) \right)^{2}}$

38

RD51 PICOSEC-Micromegas Collaboration

CEA Saclay (France): D. Desforge, I. Giomataris, T. Gustavsson, C. Guyot, F.J.Iguaz¹, M. Kebbiri, P. Legou, O. Maillard, T. Papaevangelou, M. Pomorski, P. Schwemling, L.Sohl

CERN (Switzerland): J. Bortfeldt, F. Brunbauer, C. David, D. Janssens, M. Lisowska, M. Lupberger, H. Müller, E. Oliveri, F. Resnati, L. Ropelewski, T. Schneider, P. Thuiner, M. van Stenis, A. Utrobicic, R. Veenhof², S.White³

USTC (China): J. Liu, B. Qi, X. Wang, Z. Zhang, Y. Zhou

AUTH (Greece): A. Kallitsopoulou, K. Kordas, I. Maniatis, I. Manthos⁴, K. Paraschou, D. Sampsonidis, A. Tsiamis, S.E. Tzamarias

NCSR (Greece): G. Fanourakis

NTUA (Greece): Y. Tsipolitis

LIP (Portugal): M. Gallinaro

HIP (Finland): F. García

IGFAE (Spain): D. González-Díaz

- 1) Now at Synchrotron Soleil, 91192 Gif-sur-Yvette, France
- 2) Also MEPhI & Uludag University.
- 3) Also University of Virginia.
- 4) Now at University of Birmingham