

Fast Timing with LGAD and ALTIROC

Innovative Detectors Technologies and Methods Lisbon 2023

Christophe de LA TAILLE (OMEGA)

2019

2016 Altiroc0

2 x 2 mm2 2 x 2 pixels PA + discri

> Altiroc0 and 1: No digital, To validate the FE part at system level (= ASIC bumpbonded onto a sensor)

2017

Altiroc' 7 x 7 mm2

5x5 pixels

PA+ discri +

TDC + SRAM

ALTIROC2:

First full size chip with 15 x 15 channels – 2 x 2 cm2 To demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone and bumpbonded onto a sensor

But NOT to be fully radiation hard (against SEE) CdLT IDTM Lisbon 2023

ALTIROC3:

Last full chip prototype before pre-production Same as Altiroc2 but fully triplicated

ALTIROC2's pixel integrates :

- A voltage (VPA) or trans-impedance (TZ) 1 GHz preamplifier followed by a high-speed discriminator:
 - Time walk correction made with a Time over Threshold (TOT) architecture
 - Main challenge = small jitter (low noise/capacitance) down to 4 fC
 - ⇒ Analog FE performance crucial

- TOA TDC: bin of 20 ps (7 bits), range of 2.5 ns, to be centered on the bunch crossing
- TOT TDC: bin of 120 ps (8 bits), range of 20 ns

• Hit buffer: SRAM 1536 x 19 bit

- Circular buffer to store timing data for each bunch-crossing, until a L1 trigger arrives
- Data = TOT and TOA bits, only in case of hit to save power ; with zero suppress.
- Depth of about 38 µs

• Trigger Hit Selector:

- Each received trigger associated to a trigger tag
- If data stored in Hit buffer related to received trigger, TOA/TOT data + trig tag stored into Matched Hit Buffer
- Matched Hit Buffer: 32 positions FIFO
 - Control Unit: looks for data related to a trigger event when requested by the End Of Column
 - Matched flag handled through a priority OR chain. Pixel at the top of the column with highest priority
 - Synchronous readout at 40 MHz
- Luminosity process unit
 - checks if hits are within 2 programmable windows
- I2C configuration registers

L0/L1

mega

ALTIROC1 : voltage and TZ preamps, test pulse

Omega

- « voltage » PA (VPA)
 - Rf = 12k/25k
 - G0 ~ 26 dB
 - Less parallel noise
- Transimpedance PA (TZ)
 - Rf = 4k (+opt Cf)
 - G0 ~ 50 dB
 - Shorter occupancy
 - Better ToT
- Test-pulse
 - « delta » via Ctest : optimistic
 - Rtest added in series
 - Slower rise-time (matche to LGAD pulse)

CdLT IDTM Lisbon 2023

Testbench for ALTIROC2

- Setup = ASIC board (ASIC alone or bump bonded onto sensor) + interface board + FPGA board
- **Front-end calibration :** charge injection (0 up to 50 fC) using **ASIC internal calibration pulser**, controlled by the FPGA, synchronous to 40 -MHz clock, ASIC alone: Cd=3,5 pF can be set by SC to mimic sensor capacitor
- **TOA/TOT TDC calibration :** ASIC periphery generates a trigger with tunable width and delay thanks to the phase shifted 640 MHz clock from the PLL + Random Phase Generator for DNL

Comparing measured time-of-arrival jitter with simulation

Jitter depends on the charge, but also on the discriminator thres.

Threshold trade-off to maximise pulse slope (dV/dt), thus minimize jitter.

mega

Is the internal detector capacitance equivalent to an LGAD's ?

Pulse reconstruction of a voltage preamplifier, between ASIC alone and ASIC + sensor :

Showing same amplitude & falling edge decay time \rightarrow the internal LGAD-like capacitance corresponds to 3.5 pF. Showing slightly slowly rising time \rightarrow partially explains worst jitter with sensor.

nega

What is the minimum detectable charge ? (Median at 50%)

Fighting against digital activity

Omega

CdLT IDTM Lisbon 2023

Sensor effect on noise

Digital noise injected on the preamplifier ground gets amplified only when the impedance between the detector capacitance and the non-inverting preamplifier input is not zero : when the sensor is connected !

Effect of HV decoupling : where is the AC current flowing back to ground ?

mega Multiple channels

Optimal HV impedance is very different for 5x5 and 15x15 sensor

HV resistance :

- varied from 0 to 1kOhm
- Effect on gnd_pa noise amplification
 - Goes from 20 to 1
 - ~1 for R>100 Ohm
- Current return ensured by the 224 spectator channels
 - · Was not the case with smaller sensor
- HV parasitic inductance :
 - Effect of 10 nH in HV
 - 1 channel, 25 channels, 225 channels
 - = Altiroc0/Altiroc1/Altiroc2

Altiroc2 doesn't suffer from HV parasitic inductance !

Noise amplified by PA as signal Noise **x20** when $R_{HV} = 0 \Omega$ 1.1 $\lesssim ^{10}$ 5 9.0 61.13 6.13 Noise **x1** when $R_{HV} \equiv 1 k\Omega$ 61.52 4.0 C.E 2.0 13.13 -1...19 2.5 ບັກການ ປົກໜ 20.0 75.0 channe Pulse Jt_tz 65.0 225 channels 55.0 45.0 35.0 25 channels 9 25.0 15.05.0 -5.0 -15.0 -25.0CdLT IDTM Lisbon 2023

mega

14

Signal injected still intact :

No difference on signal shape with $R_{HV} = 1 \Omega$ and $R_{HV} = 1 k\Omega$

Negligible crosstalk on neighbour preamplifier :

Current return induces -1/225 crosstalk in all neighbours

HV impedance (resistance/inductance) is very different for 5x5 and 15x15 sensor

- For small sensor, high impedance leads to deformed signals => the smallest L, the better !
- For large sensor, the low impedance is no longer required as « spectator channels » ensure a low impedance current return
- Higher HV impedance (>100 Ohm) minimizes the gain on gnd_pa => better digital noise

Jitter and minimum threshold

- Jitter optimum is rather shallow with preamp risetime
- But noise and minimum threshold goes up quickly with speed (as sqrt)

CdLT IDTM Lisbon 2023

mega

ASIC+HPK LGAD biased at -80V (B16) All TZ ON

mega

- Time-walk = convolution of the preamplifier rise time (300 ps) with LGAD rise time (600 ps)
- Skew between bottom and top of the column pixel : due to clock tree distribution

• Offline time-walk correction using TOT

Technical difficulties

- Large chip (2 x 2 cm2) powered on one side only => sensitivity to IR drops
- Very delicate floorplan to be done to guarantee the analog performance
 - Ultra Low impedance for the ground of the preamp crucial
 - Several power domains:
 - Specific power lines for each analog/mixed block: vdd_pa/gnd_pa, vdd_disc/gnd_disc, vdd_toa/gnd_toa, vdd_tot/gnd_tot
 - For Altiroc3: Vdd_toa, vdd_tot, gnd_toa, gnd_tot per column and then distribution of powers/grounds to each pixel with same R to avoid LSB dependency with activity
 - Specific power lines for digital blocks: vddd/gndd, vddd1/gndd1, vddd2/gndd2

- ALTIROC2 (ATLAS HGTD LGADs) extensively measured
 - Good performance : 30 ps at 10 fC
 - Digital noise increases with sensor
 - New domain : fast timing with small signals
- ALTIROC3 just received
 - Already indications of improved performance : better uniformity, digital noise...
 - Tests with sensor delayed by TSMC/IMEC bug on polymide openings

High speed amplifiers

- Response to very short pulse
- Broadband
 - Zin=Rs (50 Ohm)
 - Vin = Q/Cin
 - $V_{OUT} = -G_m R_F \frac{Q_{IN}}{C_d}$
- Transimpedance
 - Zin ~ Zf/G ~ 1/gm

$$- \mathbf{V}_{\mathbf{OUT}} = \frac{\frac{1}{G_{\mathbf{m}}} - \mathbf{R}_{\mathbf{F}}}{1 + j\omega \frac{C_{\mathbf{d}}}{G_{\mathbf{m}}}} \mathbf{I}_{\mathbf{IN}} \approx -\mathbf{G}_{\mathbf{m}} \mathbf{R}_{\mathbf{F}} \frac{\mathbf{Q}_{\mathbf{IN}}}{\mathbf{C}_{\mathbf{d}}}$$

- Same response at High Frequency
- For highest speed : go to broadband. Faster, less stability issues

ega

High speed amplifiers

• Jitter is given by [details in backup] :

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n}{\sqrt{2t_{10-90_PA}}} \frac{C_d \sqrt{t_{10-90_PA}^2 + t_d^2}}{Q_{in}} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

• Optimum value: $t_{10-90_{PA}} = t_d$ (current duration)

 $\sigma_t^J = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$

Cd: detector capacitance t $_{10_{-10_{-}PA}}$: rise time of the PA t_d= drift time of the detector e __n preamp noise density

- Gives ps/fC as scales with 1/Qin
- Electronics noise e_n given by the input transistor transconductance g_m:

$$e_n = \sqrt{\frac{2kT}{g_m}} \approx \frac{2kT}{\sqrt{qI_D}}$$

Dominated by sensor Electronics only gives the spectral density of the input transistor e_n

Jitter and minimum threshold

- Jitter optimum is rather shallow with preamp risetime
- But noise and minimum threshold goes up quickly with speed (as sqrt)

CdLT IDTM Lisbon 2023

mega

mega

Jitter stability under TID irradiation

ASIC alone (B7) Pixels ON : Col 7 (VPA) or 8 (TZ)

TID : 220 Mrad Dose rate : 3 Mrad/h Temperature : 22°C

All DC values and TDC bin remain constant along irradiation.

TOA TDC

TDC Power consumption 0.4 mA *1.2 V = 0,5 mW @ 10%

Differential shunt capacitor voltage-controlled delay cells

- **START** pulse comes first and initializes the TDC operation. **STOP** pulse follows the **START** with a delay that represents the time interval to be digitalized.
- At each tap of the Delay Line, STOP signal catches up to the START signal by the difference of the propagation delays
 of cells in Slow and Fast branches: i.e. 140ps 120ps = 20ps (LSB).
- The number of cells necessary for **STOP** signal to surpass the **START** signal represents the result of TDC conversion
- Cycling configuration used in order to reduce the total number of Delay Cells.
- TDC range is equal to **128** * **20 ps = 2.56 ns**

Natural TDC LSB fluctuation of TZ with temperature

TOA LSB [ps] 55 20 20

Pixel Number CdLT IDTM Lisbon 2023

mega

Maps at 20°C

####