

Fast timing electronics for the CMS MIP Timing Detector

J. Varela LIP Lisbon

Innovative Detector Technologies and Methods

Lisbon, 12-14 September 2023

1

CMS MIP Timing Detector

Timing measurement of charge particles with a precision of 30 ps (BoL) to 60 ps (EoL)	BARREL BTL Surface ~ 40 m ² Number of channels ~ 332k Radiation level ~ 2x10 ¹⁴ n _{eq} /cm ² Sensors: LYSO crystals + SiPMs
OFHIR2: readout chip of the barrel MTD	ENDCAPS ETL Surface ~ 15 m ² Number of channels ~ 8000k Radiation level ~ 2x10 ¹⁵ n _{eq} /cm ² Sensors: Low gain avalanche diodes
sensors (LYSO crystals + SiPMs)	

Fast timing electronics for the CMS MIP Timing Detector

BTL Detector Module

BTL sensor module: 16 crystal bars + SiPMs

- LYSO Crystal Arrays:
 - MIP deposits ~4.2 MeV
 - Scintillating light 30k photons/MeV
- Silicon Photomultipliers:
 - Large dark current noise due to radiation damage (up to 30 GHz)
 - SiPMs operated at -45°C (using TECs)
 - PDE 20-30% and Gain 1-3x10⁵ for OV 1.5-3.5 V

• Readout ASIC: TOFHIR2

- Each Front-End board has 2ASICs
- Each ASIC has 32 independent channels

BTL sensor module

Front-End board

Nominal parameters along BTL life (TDR specs)Integrated luminosity
(fb-1)Number of p.e.SiPM gainDCR
(GHz)0 (BoL)9500 3.8×10^5 0.0013000 (EoL)6000 1.5×10^5 30

TOFHiR: Key specifications

- Target technology TSMC CMOS 130nm (radiation characterized)
- TOFHIR operating temperature -30°C (periodic thermal annealing at 50°C)
- Handle MIP particles at a rate of 2.5 Mhit/channel
- Handle low energy particles (<1MeV) at a rate of 5 Mhit/channel
- Radiation tolerance
 - Total Ionization Dose (TID) of up to 3Mrad
 - Particle fluence of up to 2e14 neq/cm²
- Time resolution of 50ps average throughout the 10 years detector lifetime
 - Beginning-of-life (BoL) time resolution 25ps
 - End-of-life (EoL) time resolution 55ps
- Dark noise suppression up to 30GHz
- Static power dissipation of less than 15 mW per channel
- 32 channels

TOFHIR2 channel

Features:

- Branches: T, E and Q
- Three leading edge discriminators
- Full current mode implementation
- Two TACs and one QAC sharing 40 MHz SAR ADC

Challenges:

- Minimize the impact of DCR noise and pileup on time resolution
- Cope with high rate

TOFHIR2 characteristics	
Number of channels	32
Technology	CMOS 130nm
Voltage supply	1.2 V
Reference voltage	Internal
Radiation tolerance	Yes
DCR noise filter	Yes
Number of analog buffers	8
TDC bin (ps)	10
10-bit SAR ADC (MHz)	40
I/O links	CLPS
L1, L0 Trigger	Yes, Yes
Maximum MIP rate/ch (MHz)	2.5
Max low E rate/ch (MHz)	5
Clock frequency (MHz)	160

Fast timing electronics for the CMS MIP Timing Detector

J. Varela, IDTM Workshop, Lisbon, 12-14 September 2023

TOFHIR: Channel architecture – Timing branch

Timing jitter

$$\sigma^{BTL}_{t} = \sigma^{clk}_{t} \oplus \sigma^{disc}_{t} \oplus \sigma^{elec}_{t} \oplus \sigma^{photo}_{t} \oplus \sigma^{DCR}_{t}$$

Digital TOFHIR Crystal & SiPM

- Purpose detect and time-tag valid MIP events with a time resolution <50ps average throughout the detector lifetime
- There are three main contributors to time resolution
 - Digital clock jitter
 - TOFHIR Time discritizations in the TDC & electronics noise
 - Crystal photo-statistics & dark counts
- Note (dark counts)
 - Long time exposure to high radiation levels damages SiPM
 - Thermally generated small current pulses at high rates (up to 30GHz)
 - Mitigated, to an extent, by lowering operating temperature (-45°C)
 - Indistinguishable from true photoelectrons generated by MIP events

Time walk due to baseline drifts

- Stream of pulses
 - MIP events at a rate of 2.6 MHz/channel
 - Low energy events at a rate of 5 MHz/channel
 - Dark counts at a rate as high as 30 GHz
- Impacts:
 - Baseline drifts due to severe piling-up of residual pulse tails
 - Accurate time-tagging is severely impaired due to time walk, since discriminators have fixed threshold
- Baseline must be rock solid for accurate timing

TOFHiR time resolution

- At Beginning of Life (BoL), time resolution is bounded by electronics noise (dark noise is negligible)
- At End of Life (EoL), time resolution is degraded and bounded by dark noise
 - SiPM current pulses are reduced by x4 (lower gain and photoelectron yield)
 - Substantial increase in dark noise (DCR up to 25GHz@-45°C)
 - Degraded slew-rate/noise ratio
 - To reach the 50ps average time resolution, dark noise must be reduced by at least x2

TOFHIR: Dark noise suppression & DLED

DLED signal processing

 $h[f(t)] = f(t) - f(t-\delta t)$

 $\delta t = [200 \ 800] ps$

Source: MTD Technical design report pp. 30-32

DLED – Differential Leading Edge Discrimination (A. Gola et. al. TNS 2013)

- Cancels an arbitrary portion of the pulse tail (depends on delay δ)
- Preserves the rising edge and hence the timing information
- Reduced pulse amplitude, width and bipolar output pulse shape lead to lower baseline fluctuations
- Mitigate impact of local baseline fluctuations and drifts on time resolution
- Reduces the dark noise impact on time resolution

TOFHiR: Current mode front-end

TOFHIR: DLED delay line

Fast timing electronics for the CMS MIP Timing Detector

TOFHIR: Dark noise suppression with current-mode DLED

- Preserves pulse rising edge
- Pulse amplitude reduced by x80
 - Mitigates baseline drifts and fluctuations from dark noise & residual pulse tails
 - Lower time-walk errors
- Narrower pulse width by at least x10 lower pulse pile-up
- Converts the unipolar SiPM pulse into a bipolar pulse
- Reduced dark noise impact on time resolution

TOFHiR: Preamp-DLED frequency response

- High-pass frequency response (from 10MHz to 800MHz)
- Knee frequency 10MHz
- Cutoff by parasitics at 800MHz
- Frequencies above knee (10MHz) are highlighted [-40 -20]dB - Sharp pulse rising edge and timing resolution is preserved
- Frequencies below knee (10MHz) are strongly attenuated to -90dB – Assures solid and stable baseline
- Transconductor dominant pole is at 300Hz – Stability is assured

DCR noise cancellation

Simulation of time resolution in EoL conditions:

- Dark Count Rate: 55 GHz
- MIP pulses with 6000 p.e.
- SiPM gain: 1.510⁵

	SiPM ouput current	DLED output current
Slew rate (µA/ns)	135.9	9.93
Noise r.m.s (µA)	24.5	0.51
$\sigma_{ m noise}$ / SR (ps)	180	52

Time resolution is improved by a factor 3.5

Fast timing electronics for the CMS MIP Timing Detector

TOFHiR discriminators

TOFHiR discriminators range

T1 DAC ranges

T2 & E DAC ranges

TOFHiR 2C channel layout

Analog front-end layout

Fast timing electronics for the CMS MIP Timing Detector

J. Varela, IDTM Workshop, Lisbon, 12-14 September 2023

TOFHiR: Global service block

Fast timing electronics for the CMS MIP Timing Detector

TOFHiR Full Chip

• TOFHiR die area 8.5x5.2=44.2mm2, 258 I/O and power pads

Fast timing electronics for the CMS MIP Timing Detector

TOFHiR: Key measurement results

Lab measurements with UV laser

Time resolution at BoL and EoL

Time resolution as a function of threshold in BoL and EoL with TDR assumptions

Time resolution as a function of rate

Detector module with TOFHIR2 excited with UV laser (pseudo-random test pulses)

Test Beam

Results with TOFHIR2 on modules irradiated to 2E14 with 20 and 25 μ m SiPMs at T=-35°C

0 0.20.40.60.8 1 1.21.41.61.8 2 V^{eff}_{OV}[V]

TOFHiR Conclusions

- TOFHiR front-end ASIC for the MTD/BTL detector at CMS has been developed
- A radiation tolerant full current-mode AFE has been designed:
 - Meets the stringent time resolution specifications
 - EoL time resolution is met thanks to the first silicon implementation of DLED
 - DLED mitigates the low EoL pulse amplitude and high DCR
 - Fits the power budget
 - Has reasonable area for a 32 channel ASIC
 - Provides high yield
 - Has low channel-to-channel spread
- Extensive measurement campaigns show that the average time resolution of 50ps is met throughout the 10 years detector lifetime
- These achievements have been critical to the commissioning of the MTD/BTL detector

Thank you for your attention

Backup

Pulse shape

Pulse shape of LYSO excited with UV laser

- LYSO pulse: 9500 pe, SiPM gain 3.8 × 10⁵
 - UV laser tuned to generate a LYSO pulse with a given number of photoelectrons
- Pulse shape derived from discriminator threshold scan
 - The time of the leading and trailing edges are measured by the TDC1 and TDC2
- Good agreement between simulation and data.
 - The slew rate in the rising edge is 28.6 $\mu\text{A/ns}$

Solid state noise

- The contributions of the amplifier noise and TDC noise to the time resolution are estimated with laser light shining on two naked SiPMs (using a beam splitter)
- The channel time resolution is derived from the measured CTR
- Fit function: $\sigma_t = \sigma_{noise}/(dI/dt) \oplus \sigma_{TDC}$
- Fit result: $\sigma_{noise} = 0.360 \ \mu A \text{ and } \sigma_{TDC} = 12 \text{ ps.}$
- Electronics noise contribution to time resolution:

$$\sigma_t^{elect} = \frac{\sigma_{noise} = 0.36 \,\mu A}{SR = 28.6 \,\mu A/ns} = 13 \,ps$$

TDC performance

TDC binning:

- Typical binning is 11 ps _
 - 10 ps expected
- Low dispersion of binning _

Fast timing electronics for the CMS MIP Timing Detector

TDC linearity:

Differential Non-Linearity [LSB]

Integral Non-Linearity [LSB]

- $DNL < \pm 0.5 LSB$

$INL < \pm 2 LSB$

TDC resolution:

- Coincidences between TDC pairs used to cancel common jitter (e.g. clock jitter)
- TDC resolution is 13 ps
 - 5% dispersion

TDC Code (Fine Time)

TID radiation test

- TID tests done at the x-ray irradiation facility at CERN
- Max expected dose in barrel MTD is 3 Mrad
- ASICs irradiated up to 7 Mrad

Results:

- We observed effects due to large leakage current in TSCM 130nm (fab 14) at dose ~1 Mrad:
 - 20% increase of current consumption
 - 15-20% decrease of DAC's voltage range
- Full recovery after 10h annealing
- Negligible effects up to 7 Mrad in the frontend amplifiers, TDC and QDC.

SEE radiation test

- Tests of Single Event Effects (SEE) performed at Heavy Ion Facility (HIF) Louvain-la-Neuve
- SEE protection in TOFHIR2:
 - TMR on configuration bits (15'558 flip-flops) and automatic correction of SEUs
 - Transients (SETs) in the clock and resync are protected in TOFHIR2B

Results:

- Measured cross-section of corrected SEU errors
 - match well the expectations
- Observed two uncorrected SEU errors
 - with large LET (37.4 MeV/mg/cm²) and fluence of 4.5 M ions/cm2
- Extrapolation to LHC:
 - <<1 uncorrected error/chip/year

Cross-section of corrected SEU errors

TOFHIR: Typical BoL & EoL SiPM current pulses

TOFHiR: Current pulse vs delay

Timing resolution (BoL with electronics noise)

Timing resolution (EoL with DCR)

Fast timing electronics for the CMS MIP Timing Detector

TOFHIR channel timing resolution (noise and DCR)

Single channel time resolution

TOFHIR: Output current pulses through corners

TOFHiR: Ideal pulse shape

Fast timing electronics for the CMS MIP Timing Detector

J. Varela, IDTM Workshop, Lisbon, 12-14 September 2023

TOFHiR: Pulse shape calibration

TOFHiR: Channel architecture – Energy branch

TOFHiR QAC signal processing

HV

J. Varela, IDTM Workshop, Lisbon, 12-14 September 2023

TOFHIR: QAC linearity vs. Npe (BoL)

- Att=0, Delay_E=2, Pulse_trim_E=7
- Integration window = 25ns
- SiPM gain = 3.8e5
- Npe range = [0 30000]pe

TOFHIR: Energy measurements

- TOFHIR2 has a DAC to calibrate the baseline, allowing it to be set at zero
- Charge integration block has been validated
 - Good linearity in energy dependence on number of photoelectrons
 - Energy resolution below 5% in the range of pulse amplitude of interest

