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(Eleven years past) the Higgs discovery at the LHC

Central piece of the puzzle enlarges pool of fundamental questions

High Luminosity LHC = 10x more Higgs 

● deepen fundamental questions

● in pursuit of what lies beyond the SM 4

Nature 607 (2022) 60-68

Early universe 
inflation

Mass hierarchy 
of SM particles

EW >> Gravitation

What is dark matter
Matter prevails 
over antimatter

H

https://www.nature.com/articles/s41586-022-04892-x


Luminosity jump to leveled 5x1034 cm-2s-1 (=250 fb-1 / year) requires innovative technologies

● 12T superconducting (SC) Nb
3

Sn magnets

● Compact SC crab cavities                          

(ultra-precise control for beam rotation)

● New beam collimation technology               (machine 

protection and cleaning ion beams)

● High-power lossless SC links

● Upgrade of the injector chain (2018-2021)

Experiments to cope with HL upgrade

● 140-200 collisions each 25 ns crossing

● detectors exposed to high fluence (up to 1016 n
eq

/cm2) 

and dose (up to 2MGy) after 3 ab-1 5

10.1142/9581   10.17181/CERN.7NHR.6HGC

The HL-LHC project

http://www.worldscientific.com/worldscibooks/10.1142/9581
http://cds.cern.ch/record/1976692


6The CMS HL-LHC project explores new HEP paradigms 

Level 1-Trigger

Reach 750 kHz in L1 output 

with 40 MHz scouting

Tracks and particle flow @ L1

Endcap calorimeter

High granularity integrated E/HCAL 

3D shower reconstruction

Precise (~30 ps)  timing  

Tracker

Extended coverage to η ≃ 3.8 

Reduced material overburden

Increased granularity (strip/pix) 

Providing trigger primitives

MIP Timing Detector

Precision timing with 

crystals+SiPMs (barrel) or 

LGADs (endcap)

DAQ and HLT

Optical readout

Heterogeneous computing

7.5 kHz output

60 TB/s storage throughput

Barrel Calorimeters

Updated electronics

Finer L1 trigger granularity 

Precise e/γ timing (>30 GeV)

Muon systems

Extended coverage up  to η ≃ 3 

New readout electronics

GEM/RPC 1.6 < η < 2.4

BRIL (beam rad./lumi.)

Luminosity/bunch: 1(2)% off(on)line

Beam abort and timing

Beam-induced background

n and mixed-field rad. monitors

https://cds.cern.ch/record/2714892
https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2272264
https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2759072
https://cds.cern.ch/record/2283187
https://cds.cern.ch/record/2283189
http://cds.cern.ch/record/2759074
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Measure individual showers, characterise jet (sub-)structure, mitigate PU contamination

● <dN
ch

/dη>
inel

 > 1.2k at 200 PU ⇒ challenging in the “compressed” forward region

● require high transverse granularity O(1cm2) or smaller  sensors 

● benefit from longitudinal granularity to  further discriminate signals from pileup

● use ~20 ps timing to further link to other sub-detectors and collision vertex 

8The endcap calorimeter physics requirements
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Measure individual showers, characterise jet (sub-)structure, mitigate PU contamination

● <dN
ch

/dη>
inel

 > 1.2k at 200 PU ⇒ challenging in the “compressed” forward region

● require high transverse granularity O(1cm2) or smaller  sensors 

● benefit from longitudinal granularity to  further discriminate signals from pileup

● use ~20 ps timing to further link to other sub-detectors and collision vertex 

The endcap calorimeter physics requirements

Good energy resolution is also needed: ΔE/E<1% for photons from H→𝛾𝛾
● requires fine longitudinal sampling and thick enough sensors

● fine transverse granularity is also required to

○ correct as possible measurement of the damage caused by radiation effects

○ calibrate with fast and simple methods (e.g. MIP deposits)

H

Si (and plastic scintillators)  were chosen as the main sensors to be used in the new CMS endcap calorimeter

● sustain radiation-hard environment with adequate S/N for MIP-based calibration

● provide measurements of energy, position and time exploiting 5D information at large scale 9



Active Elements

• Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H

• Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

• “Cassettes”: multiple modules mounted on cooling plates with electronics and absorbers

Key Parameters

● Coverage: 1.5 < |η| < 3.0

● Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H

● Si:  6M channels in 26k modules cover 620 m2 

● Tiles: 240k channels in 3.7k boards cover ~370m2 

● Projected power at end of HL-LHC:  ~125 kW / endcap

A High Granularity endcap calorimeter: HGCAL

26 layers
27.7 X

0
 

1.5λ
21 layers      8.5λ
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Active Elements

• Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H

• Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

• “Cassettes”: multiple modules mounted on cooling plates with electronics and absorbers

Key Parameters

● Coverage: 1.5 < |η| < 3.0

● Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H

● Si:  6M channels in 26k modules cover 620 m2 

● Tiles: 240k channels in 3.7k boards cover ~370m2 

● Projected power at end of HL-LHC:  ~125 kW / endcap

A High Granularity endcap calorimeter: HGCAL

-30oC volume, 215 ton/endcap
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Si sensors 13

n-on-p sensors with p-stop cell isolation

Tiling of the endcap made with 8’’ hexagonal wafers

● Minimize number of modules by ½ wrt to 6’’ sq. sensors

● Need several partials to maximize coverage near boundary

300 
cassette600 

cassette

Full wafers Partial wafers



Si sensors
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n-on-p sensors with p-stop cell isolation

Tiling of the endcap made with 8’’ hexagonal wafers

● Minimize number of modules by ½ wrt to 6’’ sq. sensors

● Need several partials to maximize coverage near boundary

To ensure sufficient S/N for MIP calibration 

and optimized  occupancy at the end-of-life:

● three sensor thicknesses: depending on fluence

● two different pad sizes: limit pad capacitance and I
leak

300 μm up to 2x1015 neq/cm2

200 μm up to 6x1015 neq/cm2

120 μm up to 1x1016 neq/cm2

Latest irradiation measurements and 
electronics/power considerations support 
usage up to these fluences



26k Si modules will be produced in 5 assembly facilities with pre-production starting mid-2024

Strong emphasis on simple, mechanically robust module design

Adapted to be assembled automatically by robot and ease of handling

15

8” Silicon Sensor Modules

Si modules: highlights



SiPM-on-tile modules: heirs to the CALICE R&D

16

Ensure S/N>2.5 throughout detector lifetime in the last 13 layers 

● where dose permits (<2.5 kGy, <0.1 Gy/h)  ɸ<5x1013 n
eq

/cm2

● two different tile types: cast and injection-moulded

● two sizes (0.8340 or 1.250)

● two SiPM sizes: 4 and 9 mm2

● partial annealing (recover from dose damage under hypoxia)  

sets requirement of cold volume kept at 00C during shutdowns

LED-based calibration foreseen at startup

● rely on reconstructed muons throughout lifetime

In total 240k SiPMs/tiles in  in 3744 tilemodules

● 2 assembly facilities starting pre-production in mid 2024

G8

E8

D8

B12

A5
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8” Silicon Sensor Modules

Tilemodules: automated wrapping and pick tool
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Covers full dynamical region required by both Si and SiPM in the electromagnetic and hadronic section

Analogue architecture
● Programmable pre-amplifier gain

● ADC for small values: 10-bit 40 MHz SAR

● TOT TDC at large values: 12-bit, 50ps LSB

● Timing: TOA TDC 10-bit and 25ps LSB

Each chip is in charge of 78 channels 

Outputs 1.28 Gb/s
● Trigger primitives: Sum of 4 (9) channels  

linearization +7b compression (float pt)

● DAQ: 12.5 μs latency buffer (500-deep)                    

for ADC/TOT/TOA and ADC(BX-1).

● 32-event de-randomizer buffer 

Control
● Synchronous fast control: 320 MHz (8 bit @ 40 MHz) 

● Asynchronous slow control: I2C

HGCROC: the frontend ASIC



20

HGCAL on-detector readout and control chain

ECON-T 
● frontend concentrator chip for the trigger path

● Concentrates data via ¼ trigger algorithms

ECON-D
● frontend concentrator chip for the DAQ path

● Channel alignment and ZS after L1 accept

Rafael
● Clock and fast control fanout

lpGBT
● Handle data/CLK/control signals
● Via optical link (and VTRX+)
● Integrated in an engine board
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The frontend system integration in cassettes
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The frontend system integration in cassettes
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The frontend system integration in cassettes
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The frontend system integration in this year’s beam tests

The full chain including real ECON-D and 

ECON-T ASICs will be tested during the next two 

weeks in the beam test starting tomorrow !

04-09 Aug’23
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Mechanics challenges

Support wedges (KIT)

First absorbers 
(PAEC/HMC-3)

High precision, high density and heavy

Packed electronics and services integrated into each layer

Warm-cold transition

Insertion tooling

Lower 230 ton down into the cavern (-100 m underground)

Tight constraints from fixed envelope within CMS

Thick: 41.5 ± 0.5 mm
Flat: 0.22 - 0.26 mm

Φ=1.3 m
2 tonnes

Inner cylinder 
(CERN)

Services routing 
mock-up (CERN)

View of the
CO

2
 cooling plant

(-350C exiting 
cassette)
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Calibration
Routine operations are expected to be performed mostly without need for dedicated runs
● Aim for fast application of calibration constants (but also their derivation) by making use of heterogeneous computing

● Full event data unpacking expected to take <50 ms and application of calibration constants <1 ms from first implementations

Target Dataset Frequency Notes

Relative calibration
3% in CE-E cells

5-15% in CE-H cells
standard triggers few times / year

MIP at 10 ADC counts, 
ZS threshold at 0.5 MIP

Pedestal 0.3 LSB uncertainty

Charge non-linearity 2%

charge injection in 
special runs

infrequent

Charge response monitoring

ToA time slew infrequent

SiPM non-linearity O(10%)
LED data in special 

runs
commissioning

and startup
single p.e. peak

SIPM-tile-understanding
LED data in standard 

runs
as required

TDC non-linearity 15 ps random-clock events infrequent

Time zero-offset 15 ps rtandard triggers



29

Performance I
Results from early test beams are encouraging even if not  yet with final system specs (sensors and electronics)
● Fine electromagnetic and hadronic energy reconstruction: linearity and resolution

● Fair agreement between data and simulations in the transverse and longitudinal shower profile

● Potential for compensation of em fluctuations in showers using advanced ML algorithms

JINST 17 (2022) 05, P05022 JINST 18 (2023) 08, P08014 CMS-DP-2022/022

https://arxiv.org/abs/2111.06855
https://arxiv.org/abs/2211.04740
https://cds.cern.ch/record/2815404
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Performance II
Baseline reconstruction based on CLUE – algorithm for energy Clustering within single layers
● Reduces combinatorics by ~10x
● Parallelized on GPUs

Linking and pattern recognition using TICL (The Iterative Clustering) algorithm
● Representation of showers as graphs (tracksters)
● Information regressed with ML techniques for PID and energy reconstruction

CMS-DP-2022/057
C

M
S-

D
P

-2
0

2
2

/0
5

7

PU=200

Rejection of γ 
backgrounds 
CMS-DP-2022_002

CMS-DP-2022_045

https://cds.cern.ch/record/2841536
https://cds.cern.ch/record/2841536
https://cds.cern.ch/record/2805638
https://cds.cern.ch/record/2839740
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HL-LHC radiation environment and physics goal drive the choices of CMS HGCAL 

This will be an unprecedented calorimeter in HEP leveraging on

● CMS’s own experience with large Si detectors 

● CALICE’s extensive R&D and large scale SiPM-on-tile technology

5D shower imaging and reconstruction capability: crucial inputs for particle flow

● State of the art ASICS design 

● Fast and robust reconstruction algorithms

Good progress during the last years

● now transitioning to larger scale system integration and start of production

The CMS HGCAL: Outlook

crucial drivers for final performance



Backup
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Nucl.Instrum.Meth.A 859 (2017) 31-36

https://inspirehep.net/literature/1591413

