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(Eleven years past) the Higgs discovery at the LHC

Central piece of the puzzle enlarges pool of fundamental questions
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High Luminosity LHC = 10x more Higgs

e deepenfundamental questions
in pursuit of what lies beyond the SM
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https://www.nature.com/articles/s41586-022-04892-x

The HL-LHC project

Luminosity jump to leveled 5x10%* cm™s1 (=250 fb! / year) requires innovative technologies

HL-LHC :
e 12T superconducting (SC) Nb,Sn magnets Run 3 | Run4-5...
® CompactCcrabcavities 136 Tev 13614 Tev
—_— energy

(ultra-precise control for beam rotation) HL-LHC

inner triplet
radiation limit installation

e New beam collimation technology (machine .
protection and cleaning ion beams) Il““"“

510 7.5 x nominal Lumi

e High-power lossless SC links ATLAS-CMS  —
HL upgrade
e Upgrade of the injector chain (2018-2021)

2 x nominal Lumi

. . R i 3000 fb™
Experiments to cope with HL upgrade Iﬂtn??r{c?éﬁﬁ

e 140-200 collisions each 25 ns crossing CONSTRUCTION | INSTALLATION & COMM. HH PHYSICS
10.1142/9581 10.17181/CERN.7NHR.6HGC

e detectors exposed to high fluence (up to 10%¢ neq/cmz)

and dose (up to 2MGy) after 3 ab™ 5


http://www.worldscientific.com/worldscibooks/10.1142/9581
http://cds.cern.ch/record/1976692

The CMS HL-LHC project explores new HEP paradigms
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Endcap calorimeter

DAQ and HLT

s N Optical readout High granularity integrated E/HCAL
P " 1§ Heterogeneous computing 3D shower reconstruction
7.5 kHz output Precise (~30 ps) timing
60 TB/s storage throughput

‘CMS» Level 1-Trigger

Reach 750 kHz in L1 output
with 40 MHz scouting
= Tracks and particle flow @ L1

(15 L p—————
o =

" CMS Barrel Calorimeters —‘

Updated electronics
- Finer L1 trigger granularity
Precise e/y timing (>30 GeV)

Luminosity/bunch: 1(2)% off(on)line
Beam abort and timing
Beam-induced background S

n and mixed-field rad. monitors " —"

" Tracker

Muon systems

Extended coverageton=3.8
Reduced material overburden
Increased granularity (strip/pix)
Providing trigger primitives

Extended coverageup ton=3

New readout electronics
GEM/RPC1.6<n<24

Precision timing with
crystals+SiPMs (barrel) or
LGADs (endcap)



https://cds.cern.ch/record/2714892
https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2272264
https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2759072
https://cds.cern.ch/record/2283187
https://cds.cern.ch/record/2283189
http://cds.cern.ch/record/2759074
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The endcap calorimeter physics requirements :

Geant4 simulation

Measure individual showers, characterise jet (sub-)structure, mitigate PU contamination E,f
&
e <dN_,/dn> __ > 1.2kat200 PU = challenging in the “compressed” forward region ok
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The endcap calorimeter physics requirements

Measure individual showers, characterise jet (sub-)structure, mitigate PU contamination
e <dN_,/dn> __ > 1.2kat200 PU = challenging in the “compressed” forward region
e require high transverse granularity O(1cm?) or smaller sensors
e benefit from longitudinal granularity to further discriminate signals from pileup

e use ~20 ps timing to further link to other sub-detectors and collision vertex

Good energy resolution is also needed: AE/E<1% for photons from H—yy
e requires fine longitudinal sampling and thick enough sensors

e finetransverse granularity is also required to

o correct as possible measurement of the damage caused by radiation effects

o calibrate with fast and simple methods (e.g. MIP deposits)

Si (and plastic scintillators) were chosen as the main sensors to be used in the new CMS endcap calorimeter
e sustainradiation-hard environment with adequate S/N for MIP-based calibration

e provide measurements of energy, position and time exploiting 5D information at large scale



A High Granularity endcap calorimeter: HGCAL

Active Elements

e Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
e Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

e “Cassettes”: multiple modules mounted on cooling plates with electronics and absorbers

Key Parameters

Coverage: 1.5<|n| < 3.0

Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H

Si: 6M channels in 26k modules cover 620 m?

Tiles: 240k channels in 3.7k boards cover ~370m?
Projected power at end of HL-LHC: ~125 kW / endcap
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A High Granularity endcap calorimeter:

Active Elements

e Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
e Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

e “Cassettes”: multiple modules mounted on cooling plates with electronics and absorbers

Key Parameters

e Coverage:1.5<|n|<3.0

e Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H

e Si: 6M channels in 26k modules cover 620 m?

e Tiles: 240k channels in 3.7k boards cover ~370m?

e Projected power at end of HL-LHC: ~125 kW / endcap

HGCAL
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-30°C volume, 215 ton/endcap

CE-H

MEO
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~ 1k sensors*

B5K sensors*
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5$g. Sensors

»

Need several partials to maximize coverage near boundary

p sensors with p-stop cell isolation
Minimize number of modules by %2wrt to 6
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Si sensors

n-on-p sensors with p-stop cell isolation

e Need several partials to maximize coverage near boundary

To ensure sufficient S/N for MIP calibration

and optimized occupancy at the end-of-life:

e three sensor thicknesses: depending on fluence

e twodifferent pad sizes: limit pad capacitance and | __

k

Thickness V., MIP,, . i
Type e b= uris Density Cell area oF
Epitaxial 120 42 67 HD 0.56 48
HD 0.56 29

Float Zone 200 120 0 [D 1.26 61
300 263 73 LD 1.26 a5

—
—

elect

Charge Collection [fC]

o
o

O,
o

CC; ~80-110 min annealing at 600V
e T 2

300 um up to 2x10™ neq/cm2

200 um up to 6x10"° neq/cm2

120 um up to 1x10'° neq/cm2

—o

Latest irradiation measurements and

ronics/power considerations support

usage up to these fluences

i O T B
i i
L1 11 l Ll

o5 120um, v1
e 120um, v2
<% 200um,vi
= 200 um, v2
25 300 um, vi
: 4 300 um, v2
H ELLLTE 300 um; unirradiated
i] essens 120 um; unirradiated
------ 200 um; unirradiated
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Si modules: highlights

26k Si modules will be produced in 5 assembly facilities with pre-production starting mid-2024

Strong emphasis on simple, mechanically robust module design

Adapted to be assembled automatically by robot and ease of handling

» SiSensor

Au/ Kapton foil
+

Base Plate

8” sensors

15



SiPM-on-tile modules: heirs to the CALICE R&D

Ensure S/N>2.5 throughout detector lifetime in the last 13 layers
e where dose permits (<2.5 kGy, <0.1 Gy/h) ¢$<5x10*3 neq/cm2

e twodifferent tile types: cast and injection-moulded
e twosizes (0.834%0r 1.259)

SiPM
e two SiPMsizes: 4 and 9 mm?

e partial annealing (recover from dose damage under hypoxia)

sets requirement of cold volume kept at 0°C during shutdowns

LED-based calibration foreseen at startup

e relyonreconstructed muons throughout lifetime

In total 240k SiPMs/tiles in in 3744 tilemodules

e 2 assembly facilities starting pre-production in mid 2024

Wingboard (10°),
with Matherboard
below

Twinax cable
and 3 power wires

Scintillator Tileboard

~Silicon Modules 16



Tilemodules: automated wrapping and pick tool

s 12
» | ) -




Introduction

The HGCAL concept

Sensors and modules

Electronics, readout and system integration
Mechanics challenges

Performance and simulation results

18



HGCROC: the frontend ASIC

Covers full dynamical region required by both Si and SiPM in the electromagnetic and hadronic section

Analogue architecture
e Programmable pre-amplifier gain
e ADC for small values: 10-bit 40 MHz SAR
e TOTTDC at large values: 12-bit, 50ps LSB
e Timing: TOATDC 10-bit and 25ps LSB

Each chipisin charge of 78 channels

Outputs 1.28 Gb/s
e Trigger primitives: Sum of 4 (9) channels
linearization +7b compression (float pt)
e DAQ: 12.5 pslatency buffer (500-deep)
for ADC/TOT/TOA and ADC(BX-1).
e 32-eventde-randomizer buffer

Control

Slow control path

Phase Decoded clock 40M
Shifter = P e e Fast commands
|ntema| comm. port
Clock and control path Fast commands
| e e e e e 1 DAQ path L1 Readout path
| | decoding H
ADC ¥ L1 [AH
| Triggered|M Data
| Iy Latency TOT H 78/ readout
PA » TOA —— o [ A 7 Event |M
| ] manager encoding % Circular fFo |1 nlagaRgce:zr
| o / | Eifer i 2x Data
| > TOT [ | RAM2 |G fink
et e e | N RAM1 -1
G
4l x78 channels (72 + 4 CM + 2 calibration channels)
A A -
Y I == :
I Digital 7 bi » Trigger
Charge I T Trun:g?i - readout —lz:
Linearization : : »| Manager
: (4 0r9) Compression )
I 4x Trigger
per channel Trigger path  16x / 8x trigger cell unit link
Y
S DAC Bandgap Slow control
C;'.t’;gg?\” ToT/ToA [ | Voltage comm. Port
! thresholds References 12C

e Synchronous fast control: 320 MHz (8 bit @ 40 MHz)

e Asynchronous slow control: 12C



HGCAL on-detector readout and control chain

ECON-D

Hexaboards

HGCROC 1.28Gbps e-links

Engines & Wagons

1.28Gbps e-links

I"""ECON Mezz

-

‘@ECOND | |

LD: 3 HGCROCs / Hexaboard
HD: 6 HGCROCs / Hexaboard

rigger Path ECON-T +—’

) SRR ST ;| 12C

Off Detector

10.24 Gbps optical links

“| IpGBT |+

A 4

VIR —¢—

Back-End

LDO

bPOL12

frontend concentrator chip for the DAQ path
Channel alignment and ZS after L1 accept

e frontend concentrator chip for the trigger path

e Concentrates datavia % trigger algorithms

Control & Timing
TPG & DAQ

“ I
-
Rafael [«
Fast Commands + clock (320MHz)

linPOL12

Clock and fast control fanout

Handle data/CLK/control signals
Via optical link (and VTRX+)

e Integratedin

an engine board
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The frontend system integration in cassettes

Note: each layer is different!
Occupancies vary greatly within
and between layers

Low density region

¢ Sisensor 200 or 300 pm
thickness

e 192 channels (3 HGCROC)

DC/DC module per 8” hexagonal module

with 2x bpol12V
ag a | T High density region
“Deported” w * Sisensor 120 ym active
DC/DC module - NdeEe | thickness

e 432 channels (6 HGCROC)
per 8” hexagonal module

HD Module

HD wagon

21



The frontend system integration in cassettes

Note: each layer is different!

Module (Si sensor + hexaboard) Occupancies vary greatly within
and between layers

Readout train =
engine + wagon(s)

Engine:
* complex components
e few varieties

DC/DC module (S - o | Wagons:

with 2x bpol12V EEERERe > 3 b S _ * “rigid wires” absorb the
geometrical complexities

* many varieties

“Deported”
DC/DC module

Additional design constraints

from need to route services
HD Module

HD wagon



The frontend system integration in cassettes

WMV 7 7/
WA N /ﬁz"f

DC/DC module
with 2x bpol12V

“Deported”
DC/DC module

HD Module
HD wagon



The frontend system integration in this year’s beam tests

04-09 Aug’'23

ylem]

CMS Work in progress

Engines&Wagons

The full chain including real ECON-D and
ECON-T ASICs will be tested during the next two

weeks in the beam test starting tomorrow !
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Mechanics challenges

High precision, high density and heavy
Packed electronics and services integrated into each layer
Warm-cold transition

Insertion tooling
Lower 230 ton down into the cavern (-100 m underground)

Tight constraints from fixed envelope within CMS

First absorbers
(PAEC/HMC-3)

View of the

CO, cooling plant
(-359C exiting
cassette)

Services routing
mock-up (CERN)

Support wedges (KIT)
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Calibration

Routine operations are expected to be performed mostly without need for dedicated runs
e Aim for fast application of calibration constants (but also their derivation) by making use of heterogeneous computing
e Full event data unpacking expected to take <50 ms and application of calibration constants <1 ms from first implementations

Target Dataset Frequency Notes

. . . 3% in CE-E cells . . MIP at 10 ADC counts,
Relative calibration 5.15% in CE-H cells standard triggers few times / year 75 threshold at 0.5 MIP
Pedestal 0.3 LSB uncertainty
Charge non-linearity 2% infrequent

charge injectionin
Charge response monitoring special runs
ToA time slew infrequent
SiPM non-linearit O(10%) LED data in special commissioning single p.e. peak
y ° runs and startup glepe.p

SIPM-tile-understanding LED datilljr:]:tandard as required
TDC non-linearity 15 ps random-clock events infrequent

Time zero-offset 15 ps rtandard triggers




Performancel

Results from early test beams are encouraging even if not yet with final system specs (sensors and electronics)
e Fine electromagnetic and hadronic energy reconstruction: linearity and resolution
e Fair agreement between data and simulations in the transverse and longitudinal shower profile
e Potential for compensation of em fluctuations in showers using advanced ML algorithms
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https://arxiv.org/abs/2111.06855
https://arxiv.org/abs/2211.04740
https://cds.cern.ch/record/2815404

Performance ll

Baseline reconstruction based on CLUE - algorithm for energy Clustering within single Iayers

'ﬁ ak‘

e Reduces combinatorics by ~10x
e Parallelized on GPUs

Linking and pattern recognition using TICL (The Iterative Clustering) algorithm

e Representation of showers as graphs (tracksters)

e Information regressed with ML techniques for PID and energy reconstruction

Axis after cleaning
-~ Gen-photon direction
— Axis before cleaning
@ Discarded LCs
@ Cleaned trackster

Efficiency

CMS-DP-2022/057
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HL-LHC radiation environment and physics goal drive the choices of CMS HGCAL

This will be an unprecedented calorimeter in HEP leveraging on

e CMS’s own experience with large Si detectors

e CALICE’s extensive R&D and large scale SiPM-on-tile technology
5D shower imaging and reconstruction capability: crucial inputs for particle flow

e State of the art ASICS design , ,
crucial drivers for final performance

e Fastand robust reconstruction algorithms
Good progress during the last years

e now transitioning to larger scale system integration and start of production
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S, vs MCP e 50 GeV 4 X, S, vs MCP e 50 GeV 4 X,

- e &
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Fig. 9. The timing resolution between the first silicon sensor and the MCP as a function of the signal (left) and as a function of the signal-to-noise ratio (right). All three different
thickness sensors are compared. The constant term, C, is dominated by the MCP resolution, estimated to be 21 ps.

Nucl.Instrum.Meth.A 859 (2017) 31-36
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https://inspirehep.net/literature/1591413

