The CMS High Granularity Calorimetry

(challenges in energy and timing measurements)

P. Ferreira da Silva (CERN) Innovative Detector Technologies and Methods Lisboa, 12-14 September 2023

Nadir Afonso, 'Perspectiva II', 1965

- The HGCAL concept
- **Sensors and modules**
- **Electronics, readout and system integration**
- **Mechanics challenges**
- **Performance and simulation results**

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

(Eleven years past) the Higgs discovery at the LHC

Central piece of the puzzle enlarges pool of fundamental questions

- deepen fundamental questions
- in pursuit of what lies beyond the SM

The HL-LHC project

Luminosity jump to leveled 5×10^{34} cm⁻²s⁻¹ (=250 fb⁻¹ / year) requires innovative technologies

- 12T superconducting (SC) Nb₃Sn magnets
- Compact SC crab cavities
 - (ultra-precise control for beam rotation)
- New beam collimation technology protection and cleaning ion beams)
- High-power lossless SC links
- Upgrade of the injector chain (2018-2021)

Experiments to cope with HL upgrade

- 140-200 collisions each 25 ns crossing
- detectors exposed to high fluence (up to 10¹⁶ n_{eq}/cm²) and dose (up to 2MGy) after 3 ab⁻¹

The CMS HL-LHC project explores new HEP paradigms

LGADs (endcap)

Providing trigger primitives

GEM/RPC 1.6 < n < 2.4

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

The endcap calorimeter physics requirements

The endcap calorimeter physics requirements

Measure individual showers, characterise jet (sub-)structure, mitigate PU contamination

- $<dN_{ch}/d\eta>_{inel} > 1.2k$ at 200 PU \Rightarrow challenging in the "compressed" forward region
- require high transverse granularity $\mathcal{O}(1\text{cm}^2)$ or smaller sensors
- benefit from longitudinal granularity to further discriminate signals from pileup
- use ~20 ps timing to further link to other sub-detectors and collision vertex

Good energy resolution is also needed: $\Delta E/E < 1\%$ for photons from $H \rightarrow \gamma \gamma$

- requires fine longitudinal sampling and thick enough sensors
- fine transverse granularity is also required to
 - correct as possible measurement of the damage caused by radiation effects
 - calibrate with fast and simple methods (e.g. MIP deposits)

Si (and plastic scintillators) were chosen as the main sensors to be used in the new CMS endcap calorimeter

- sustain radiation-hard environment with adequate S/N for MIP-based calibration
- provide measurements of energy, position and time exploiting 5D information at large scale

A High Granularity endcap calorimeter: HGCAL

Active Elements

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers

Key Parameters

- Coverage: 1.5 < |η| < 3.0
- Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H
- Si: 6M channels in 26k modules cover 620 m²
- Tiles: 240k channels in 3.7k boards cover ~370m²
- Projected power at end of HL-LHC: ~125 kW / endcap

A High Granularity endcap calorimeter: HGCAL

Active Elements • Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H -30°C volume, 215 ton/endcap • Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H CE-H • "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers ME0 CE-E **Key Parameters** Coverage: $1.5 < |\eta| < 3.0$ ~5.4 m Absorbers: Cu, CuW and Pb in CE-E, Steel in CE-H Si: 6M channels in 26k modules cover 620 m^2 Tiles: 240k channels in 3.7k boards cover ~370m² Projected power at end of HL-LHC: ~125 kW / endcap 2.2m ETL

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

Si sensors

n-on-p sensors with p-stop cell isolation

Tiling of the endcap made with 8" hexagonal wafers

- Minimize number of modules by ½ wrt to 6" sq. sensors
- Need several partials to maximize coverage near boundary

Si sensors

n-on-p sensors with p-stop cell isolation

Tiling of the endcap made with 8" hexagonal wafers

- Minimize number of modules by ¹/₂ wrt to 6" sq. sensors
- Need several partials to maximize coverage near boundary

To ensure sufficient S/N for MIP calibration and optimized occupancy at the end-of-life:

- three sensor thicknesses: depending on fluence
- two different pad sizes: limit pad capacitance and I_{leak}

Туре	Thickness [µm]	V _{dop} [V]	MIP_{eq} [ke ⁻ / μ m]	Density	Cell area	C [pF]
Epitaxial	120	42	67	HD	0.56	48
Float Zone	200	120	70	HD	0.56	29
				LD	1.26	67
	300	263	73	LD	1.26	45

300 μm up to 2x10^{15} $n_{en}^{}/cm^2$

200 μ m up to 6x10¹⁵ n_{eq}/cm²

Si modules: highlights

26k Si modules will be produced in 5 assembly facilities with pre-production starting mid-2024

Strong emphasis on simple, mechanically robust module design

Adapted to be assembled automatically by robot and ease of handling

8" Silicon Sensor Modules

SiPM-on-tile modules: heirs to the CALICE R&D

Ensure S/N>2.5 throughout detector lifetime in the last 13 layers

- where dose permits (<2.5 kGy, <0.1 Gy/h) ϕ <5x10¹³ n_{ed}/cm²
- two different tile types: cast and injection-moulded
- two sizes (0.834^o or 1.25^o)
- two SiPM sizes: 4 and 9 mm²
- partial annealing (recover from dose damage under hypoxia) sets requirement of cold volume kept at 0°C during shutdowns

LED-based calibration foreseen at startup

• rely on reconstructed muons throughout lifetime

In total 240k SiPMs/tiles in in 3744 tilemodules

• 2 assembly facilities starting pre-production in mid 2024

Tilemodules: automated wrapping and pick tool

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

HGCROC: the frontend ASIC

Covers full dynamical region required by both Si and SiPM in the electromagnetic and hadronic section

Analogue architecture

- Programmable pre-amplifier gain
- ADC for small values: 10-bit 40 MHz SAR
- TOT TDC at large values: 12-bit, 50ps LSB
- Timing: TOA TDC 10-bit and 25ps LSB

Each chip is in charge of 78 channels

Outputs 1.28 Gb/s

- Trigger primitives: Sum of 4 (9) channels linearization +7b compression (float pt)
- DAQ: 12.5 µs latency buffer (500-deep) for ADC/TOT/TOA and ADC(BX-1).
- 32-event de-randomizer buffer

Control

- Synchronous fast control: 320 MHz (8 bit @ 40 MHz)
- Asynchronous slow control: I2C

HGCAL on-detector readout and control chain

Integrated in an engine board

The frontend system integration in cassettes

Note: each layer is different! Occupancies vary greatly within and between layers

Low density region

- Si sensor 200 or 300 µm thickness
- 192 channels (3 HGCROC) per 8" hexagonal module

High density region

- Si sensor 120 µm active thickness
- 432 channels (6 HGCROC) per 8" hexagonal module

The frontend system integration in cassettes

Note: each layer is different! Occupancies vary greatly within and between layers

> Readout train = engine + wagon(s)

Engine:

- complex components
- few varieties

Wagons:

- "rigid wires" absorb the geometrical complexities
- many varieties

Additional design constraints from need to route services

The frontend system integration in cassettes

The frontend system integration in this year's beam tests

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

Mechanics challenges

High precision, high density and heavy
Packed electronics and services integrated into each layer
Warm-cold transition
Insertion tooling
Lower 230 ton down into the cavern (-100 m underground)
Tight constraints from fixed envelope within CMS

<image><image>

Services routing mock-up (CERN)

Support wedges (KIT)

The HGCAL concept

Sensors and modules

Electronics, readout and system integration

Mechanics challenges

Performance and simulation results

Calibration

Routine operations are expected to be performed mostly without need for dedicated runs

- Aim for fast application of calibration constants (but also their derivation) by making use of heterogeneous computing
- Full event data unpacking expected to take <50 ms and application of calibration constants <1 ms from first implementations

	Target	Dataset	Frequency	Notes
Relative calibration	3% in CE-E cells 5-15% in CE-H cells	standard triggers	few times / year	MIP at 10 ADC counts, ZS threshold at 0.5 MIP
Pedestal	0.3 LSB uncertainty			
Charge non-linearity	2%		infrequent	
Charge response monitoring		charge injection in special runs		
ToA time slew			infrequent	
SiPM non-linearity	O(10%)	LED data in special runs	commissioning and startup	single p.e. peak
SIPM-tile-understanding		LED data in standard runs		as required
TDC non-linearity	15 ps	random-clock events	infrequent	
Time zero-offset	15 ps	rtandard triggers		

Performance I

Results from early test beams are encouraging even if not yet with final system specs (sensors and electronics)

- Fine electromagnetic and hadronic energy reconstruction: linearity and resolution
- Fair agreement between data and simulations in the transverse and longitudinal shower profile
- Potential for compensation of em fluctuations in showers using advanced ML algorithms

Performance II

Baseline reconstruction based on CLUE - algorithm for energy Clustering within single layers

- Reduces combinatorics by ~10x
- Parallelized on GPUs

Linking and pattern recognition using TICL (The Iterative Clustering) algorithm

- Representation of showers as graphs (tracksters)
- Information regressed with ML techniques for PID and energy reconstruction

Tracksters of two

30

Summary

HL-LHC radiation environment and physics goal drive the choices of CMS HGCAL This will be an unprecedented calorimeter in HEP leveraging on

- CMS's own experience with large Si detectors
- CALICE's extensive R&D and large scale SiPM-on-tile technology

5D shower imaging and reconstruction capability: crucial inputs for particle flow

• State of the art ASICS design

crucial drivers for final performance

- Fast and robust reconstruction algorithms
- Good progress during the last years
- now transitioning to larger scale system integration and start of production

Fig. 9. The timing resolution between the first silicon sensor and the MCP as a function of the signal (left) and as a function of the signal-to-noise ratio (right). All three different thickness sensors are compared. The constant term, *C*, is dominated by the MCP resolution, estimated to be 21 ps.

Nucl.Instrum.Meth.A 859 (2017) 31-36