

MPGD-based HCAL for a future experiment at Muon Collider

L. Longo, on behalf of the muon collider collaboration

Istituto Nazionale di Fisica Nucleare Sezione di Bari

Multi-TeV Muon Collider

Advantages:

- multi-TeV energy range in compact circular machines;
- well defined initial state and cleaner final state;
- all collision energy available in the hard-scattering process.

Challenges:

- muon is an unstable particle; its decay products interact with the machine elements generating an intense flux O(10¹⁰) of background particles: beam-induced background (BIB).
- Two conical tungsten shieldings (nozzles), cladded with borated polyethylene, allow the reduction of background by 2-3 orders of magnitude.

BIB in the detector

Main BIB components entering the detector per bunch crossing (BX):

- photons (~10⁸),
- neutrons (~10⁸),
- electrons/positrons (~10⁶).

3

BIB in the calorimeter system

- The **BIB** comes mainly from **photons** (96%) and **neutrons** (4%).
- Occupancy for energy above 0.2 MeV:
 - Electromagnetic Calo (ECAL): 0.9 hits/cm2
 - Hadronic Calo (HCAL): 0.06 hits/cm2

Requirements for a Particle Flow calorimeter at Muon Collider:

- High granularity: O(1cm²) cell in ECAL, O(3cm²) cell in HCAL.
- Longitudinal segmentation.
- Good timing ($\sigma_t = 100 \text{ ps-1ns}$).
- Energy resolution to work in Particle Flow approach:
 - ECAL: 10%/ \sqrt{E} ,
 - HCAL: 30%/√E.
- Radiation hardness.

<u>https://arxiv.org/abs</u>

303.08533

MPGD-HCAL for Muon Collider

- CALICE collaboration has already proposed gaseous detectors for sampling calorimeter.
- On going R&D effort on a Hadronic Calorimeter based on Micro Pattern Gaseous Detector (MPGD)

Why MPGD-base HCAL?

- Radiation hardness,
- fine granularity,
- rate capability O(MHz/cm2)
- good space (<100 um) resolution,
- response uniformity,
- cheap for large area instrumentation.

R&D MPGD-HCAL

Geant4 simulation studies:

- shower containment
- cell dimension (1cm² Vs 3cm²)
- energy resolution

MPGD-HCAL prototype:

- characterization of the various 20x20 cm² detectors used as active layers;
- HCAL prototype performance at test beams

GEANT4 simulation studies

G4 simulation - Shower containment

Geometry implemented

- Sampling calorimeter made of
 - 2 cm of Iron (absorber)
 - 5 mm of Ar/CO2 (active gap)
 - Cell granularity: 1x1 cm2

Source: π gun from 1 to 80 GeV

Energy contained at 90%

- 14 $\boldsymbol{\lambda}_{N}$ in the direction of the incoming π
- $3\lambda_{N}$ in the orthogonal direction

G4 simulation - Digital and Semi-digital HCAL

Digital Readout

- **Digitization:** 1 hit=1cell with energy deposit higher than the applied threshold
- Calorimeter response function: $<N_{hit}>=f(E_{TT})$
- **Reconstructed energy:** $E_{\pi} = f^{-1}(\langle N_{hit} \rangle)$

Semi-digital Readout

- **Digitization:** defined multiple thresholds
- **Reconstructed energy:** $E_{\pi} = \alpha N_1 + \beta N_2 + \gamma N_3$ with:
 - *N*_{*i*=1,2,3} number of hits above *i*-threshold
 - α, β, γ parameters obtained by χ^2 minimization procedure

G4 simulation - Digital and Semi-digital HCAL

- Digital HCAL (DHCAL) is affected by the saturation of the number of hits at energies above 40 GeV
- Semi-digital HCAL (SDHCAL) shows an energy resolution of ~8% for a pion of 80 GeV

G4 simulation - Cell size

The increase of cell size $(1x1cm^2 \rightarrow 3x3 cm^2)$ implicates a saturation effect at energies above 60 GeV:

- SDHCAL 1x1cm² resolution of ~ 8%
- SDHCAL 3x3cm² resolution of ~10%

MPGD-HCAL prototype

In collaboration with:

- INFN Frascati
- INFN Naples
- INFN Rome3
- Weizman Institute of Science

MPGD-HCAL prototype

8 layers

- MPGD: MM, μRWell, RPWELL
- Iron absorber ~ $1\lambda_{N}$

Two test beam campaigns in 2023 to measure:

- single MPGD performance (5-19 July)
- HCAL cell performance (30 August 6 September)

MPGD-HCAL prototype - July test beam

July 2023: MPGD test beam campaign at SPS with O(100 GeV) muon beam with the goal to measure

- response uniformity
- efficiency
- spatial resolution

Data taking:

- 12 chambers to be tested in total, read 6 chambers at a time
- HV, XY position scan
- During last days instrumented only central pads to read all the calo-chambers at once

Track reconstruction:

- TMM temporarily excluded
- reconstruct the track using hits from 5 calo detectors, the 6 chamber is the one under test

MPGD-HCAL prototype - July test beam

16

MPGD-HCAL prototype - July test beam

HV scan

- Micromegas and RPWELL show efficiency of above 95%
- μ RWELL not in plateau for the scanned values \rightarrow foreseen a new HV scan

MPGD-HCAL prototype - Aug test beam

Full prototype test beam campaign at PS

- pure negative pion beams
- beam size of ~1cm²
- monochromatic E=2, 4, 6,7,9,10 GeV First operation of the full system!

Scientific program

- without absorbers: response to an X&Y scan
- with absorbers: energy and energy resolution measurement with monochromatic beam
- Define the thresholds for semi-digital readout using the per-pad charge distribution obtained with the analog readout

Results

Conclusions

Conclusions

MPGD-HCal simulation in G4– response to single π :

• Energy resolution better with **semi-digital RO** for cells of 1x1 cm2

Test on MPGD prototype:

- preliminary results show that the single detectors run well but performance studies are in progress
- results from PS test beam to be fully analyzed and compared with a GEANT 4 simulation

