

SND: A new neutrino detector at the LHC

at the LHC

Federico Lasagni Manghi on behalf of the SND@LHC collaboration

Innovative Detectors Technologies and Methods, 12-14 Sep 2023, Lisboa

² Overview and references

- Neutrino research and neutrinos @ LHC
 - Comparison with cosmics and accelerator experiments
- SND goals and design strategies
- The detector
 - Veto, emulsions, calorimetry and muon tracking
 - DAQ and online system
- Results
- Current activities and future upgrades

Techincal proposal: <u>https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf</u> Neutrino observation: <u>https://doi.org/10.1103/PhysRevLett.131.031802</u>

Scattering and Neutrino Detector at the LHC

3 Neutrinos @ LHC

	Neutrinos in	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	480	270
$ar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	140
$ u_e$	339	$3.4 imes 10^{11}$	760	250	720	80
$ar{ u}_e$	363	$3.8 imes 10^{11}$	680	140	720	50
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20	740	10
$ar u_ au$	380	$2.7 imes 10^{10}$	740	10	740	5
TOT		4.0×10^{12}		1690		555

- Large v flux at LHC
- $\sigma DIS_v \propto E_v(E_v \in [10^2, 10^3] \text{ GeV})$
- Small detectors can capture a sizeable / number of interactions (for ex: @250 fb⁻¹)

Two experiments are active at opposing sides of the ATLAS interaction point IP1:

- FASERV $\eta > 9$
- SND@LHC 7.2 < η < 8.4
 - Maximised charmed (and b) hadron contribution
 - Located at TI18, 480 m away from the ATLAS IP

Goals and deisgn strategies

Goals:

4

- Charmed-hadron production in pp collisions
- Lepton flavour universality test in v interactions
 - Requires identification of ALL neutrino flavors with high efficiency
- Measurement of the NC/CC ratio
- Search for Feebly Interacting Particles (relic Dark Matter candidates):
 - Direct scattering off electrons complementary to missing Et searches

Detector design:

- a VETO system to reject background
- a timestamp and energy measurement system
- a vertex detector with enough resolution to disentangle the neutrino-interaction vertex from the one of the tau-lepton decay;
- a muon system to identify the muon produced in v_µ CC interactions and in the muonic decay of the tau lepton.

5 Detector design

Hybrid design combining nuclear emulsion technology and electronic detectors

Veto scintillation planes to remove direct muons and particles produced in the rock interactions

6 Veto

- Rejects charged particles entering the detector acceptance, mostly muons coming from IP1
- Two parallel planes, located 4.3 cm apart, of stacked EJ-200 scintillating bars read out on both ends by eight Hamamatsu S14160-6050HS silicon photomultipliers (SiPMs) mounted on a custom PCB
- Inefficiency of the coincidence of the two veto detector planes, was estimated at 7.0×10⁻⁷ (worse in the first period of data taking)
- Mostly due to SiPM dead-time

7 Target and vertex detector

- Target based on the Emulsion Cloud Chamber (ECC) technique
 - 5 emulsion brick walls, each made of 4 bricks:
 - Every 192 × 192 mm² brick is made of 60 films and 59 1mm tungsten layers
 - Emulsions are replaced every ~20 fb⁻¹
- Read one by one using automated optical microscopes
- Resolutions: sub-micrometric position and milliradian angular
- A neutron shield and cold box was built to protect the emulsions

8 SciFi and EM calorimetry

- The Target Tracker system is made of five scintillating fibre (SciFi) planes interleaving the five target walls with a ~150 µm spatial and 250 ps time resolutions
- The fibre mat is composed of six layers of fibres glued with a titan oxide loaded epoxy glue to suppress cross talk between fibres.
 - Readout:
 - \$13552 SiPM multichannel arrays by Hamamatsu at the end of the fibre module
 - Kapton flex PCB holding the photo-detector
- Emulsion and SciFi make up a sampled electromagnetic calorimeter with an average thickness of about 40 X₀
- (see Guilherme's talk for details and performance)

https://indico.lip.pt/event/1491/contributions/5115/a ttachments/4137/6476/IDTM_SND_SciFi.pdf

9 Muon system and hadronic calorimeter

- Eight layers of scintillating planes interleaved with 20 cm-thick iron slabs
- Passive material thickness 9.5 λ int (11 λ int total)
- The first five upstream layers (US) are made of 6 cm-thick horizontal scintillating bars
- The last three downstream layers (DS), made of fine-grained horizontal and vertical scintillating bars
- The DS layers act as precision tracking for the muons, identified as the tracks that cross all layers
 - spatial resolution of less than 1 cm

Calorimeter preliminary performance

10

11 The detector

¹² DAQ and online system

- Sub-systems are read out with the same DAQ electronics:
 - 37 DAQ boards based on the Mercury SA1 module from Enclustra featuring an Altera Cyclone V FPGA
 - Up to four front-end (FE) boards per DAQ board, based on the TOFPET2 ASIC, by PETsys
 - Up to 512 read out channel per DAQ board
- TTC system receiving LHC clock and orbit data for synchronization
- Online luminosity taken from the data stream from ATLAS to LHC

Ethernet acquisition

> **Optical TTC:** LHC clock and timing info

Neutrino observation

- Published paper on the 2022 pp data at 13.6 TeV (<u>https://doi.org/10.1103/PhysRevLett.131.031802</u>)
- Delivered integrated luminosity during this period, estimated by ATLAS, was 38.7 fb⁻¹
 - 36.8 fb⁻¹ recorded (95% up-tim)
 - The data set comprises a total of 8.3×10^9 events.
- First observation of v_µ CC interactions, using the data from the electronic detectors
- High energy of the v_µ s -> dominant CC process
 = deep inelastic scattering (CCDIS)
- Signature: isolated muon track in the muon system associated with a hadronic shower detected in the SciFi and hadronic calorimeter

14 Analysis and backgrounds

- Cuts are applied on the hit multiplicity in the veto and SciFi planes:
 - Select events in the 3rd or 4th target wall and consistent with a neutral particle interaction.
 - Discard events at the edge of the detectors: 25×26 cm² xv fiducial area. $\epsilon = 7.5\%$
- Large hadronic activity in the calorimeter and clean outgoing muon track from p1
- Overall rejection factor 10⁹, efficiency on the v_µ CCDIS Monte Carlo sample: 2.7%
- Background: (8.6 ± 3.8) × 10^{-2} dominated by neutrons and K_L⁰ s, 44% uncertainty

- 8 vµ CCDIS candidates identified, 4.5 expected, <1% contamination
 - Neutrals have fewer SciFi hits
 - Not used in the selection, but powerful discriminant
- Exclusion of the background-only hypothesis at the level of 6.8 standard deviations
- First observation in the 7.2 < η < 8.4 region

Now onto the 2023 data (31.8 fb⁻¹, 99.7% uptime)

¹⁶ Emulsion scans

- Emulsion films swapped every 20 fb⁻¹
- Automated scanning process using optical microscopes
 - 🕨 @ CERN, Bologna, Lebedev, Napoli
- In the process of increasing the number of microscopes
 - Each one scanning one film per day
 - Analysis of the emulsion data under way

Tracks going through 1 x 1 mm2 in 0.52 fb-1

Upgrade for HL-LHC 17

- AdvancedSND-Far: 7.2< η <8.4
 - Acceptance similar to SND@LHC
 - Charm production measurements
 - Lepton flavour universality
- AdvanceSND-Near: $4 < \eta < 5$
 - Overlap with LHCb pseudo-rapidity coverage
 - Reduction of systematic uncertainties
 - Provide normalization for neutrino physics studies
 - Neutrino cross-section measurements

18 Conclusions

- Accelerator neutrinos can cover an energy range that was not probed in other kinds of experiments
- High cross section and flux allow observations with relatively compact detectors
- SND@LHC has a wide physics program thanks to the hybrid electronic and emulsion design
- The observation of muon neutrinos using the electronic detectors was published
 - 8 neutrinos observed with <1% estimated BG contamination</p>
- Emulsion scans are in in progress to get precision vertex reconstruction
- For HL-LHC a double detector is planned, covering a complementary η range

Thank you for your attention!

Scattering and Neutrino Detector at the LHC

Backup

Scattering and Neutrino Detector at the LHC

- Interest in neutrinos at the LHC since the '80s
- Low energy neutrino interactions studied extensively in many experiments
 - Nuclear PP, solar, etc
- Very high enery cosmic neutrinos recently published by Ice Cube
- At high neutrino energy ($E_v \in [10^2, 10^3]$ GeV), $\sigma DIS_v \propto E_v$

22

Charmed-hadron production in pp collisions

- v_e as a probe of the charm production
- Leading contribution to the uncertainty: 35% systematic error due to the K contribution, unfolding and simulation uncertainties

Lepton flavour universality test in v interactions

 v_{e}/v_{u} ratio as a lepton flavour universality test in neutrino interactions (15% err)

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{B}r(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{B}r(D_s \to \nu_\tau)},$$

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}} \cdot \underbrace{\text{contamination}}_{\text{from } \pi/k}$$

CASE I: 7.2< nmeson < 8.6

Lepton Flavour Universality Test

Sensitive to v-nucleon interaction cross-section ratio of two neutrino species

The measurement of the v_e/v_{μ} ratio can be used as a test of the LFU for E>600 GeV

Feebly interactive particles

1. Scattering

Production: scalar χ particle coupled to the Standard Model via a leptophobic portal

Detection: χ elastic/inelastic scattering off nucleons of the target

2. Decay of dark scalars, HNLs, dark photons

Production: dark scalars produced in the decay of B mesons, HLNs in the decay of B and D mesons, dark photons via leptophobic mediator

Detection: Decays in a pair of charged tracks or monophotons

