

8th mini-school on Particle and Astroparticle Physics Oeiras 15-20. May. 2023

European Research Council Established by the European Commission

QCD

Carlos A. Salgado IGFAE - Santiago de Compostela

QCD is the theory that describes the **Strong interaction** that binds together protons and neutrons in the atomic nuclei

QCD lecture - LIP2023 - Mini-school

Carlos A. Salgado

HADRONS = those feel part Yre TT PROTONS + NEU ••• • • • D 🗎 pd particle data group Particl R.L. Workman et al. (Particle Data Group), Cut-off date for Listings/Summary Tables was Jan. 15, 2022. Files can be dow Expan Gauge & Leptons (e, mu, tau, ne Quarks Mesons (pi, K, D Light Unflavored M pi+– PDF PDF pi0

icles f	hat			
strong	intere	i chin		
TRONS	+ (005	SINS		
dg.lbl.gov	Ċ		⊕ ₫ +	
	SHORTCUTS - CIT	ATION CONTAC	T ABOUT -	
e Listings Prog. Theor. Exp. Phys. 2022, O mloaded directly by clicking on th	983C01 (2022) he icon: PDF. For a key to the	e listings <u>click here</u> .		
/Collapse All				
Higgs Bosons				
utrinos, heavy leptons .)			
u,d,s,c,b,t)		+		
, B, psi, Upsilon,)				
lesons ($S = C = B = 0$)				
omega(3)(1670)		PDF		
pi(2)(1670)		PDF		

HADRONS = those feel part Yre TT PROTONS + NEU ••• • • • D 🗎 pd particle data group Particl R.L. Workman et al. (Particle Data Group), Cut-off date for Listings/Summary Tables was Jan. 15, 2022. Files can be dow Expan Gauge & Leptons (e, mu, tau, ne Quarks Mesons (pi, K, D Light Unflavored M pi+– PDF PDF pi0

icles f	hat			
strong	intere	i chin		
TRONS	+ (005	SINS		
dg.lbl.gov	Ċ		⊕ ₫ +	
	SHORTCUTS - CIT	ATION CONTAC	T ABOUT -	
e Listings Prog. Theor. Exp. Phys. 2022, O mloaded directly by clicking on th	983C01 (2022) he icon: PDF. For a key to the	e listings <u>click here</u> .		
/Collapse All				
Higgs Bosons				
utrinos, heavy leptons .)			
u,d,s,c,b,t)		+		
, B, psi, Upsilon,)				
lesons ($S = C = B = 0$)				
omega(3)(1670)		PDF		
pi(2)(1670)		PDF		

HADRONS = those parti feel the s PROTONS + NEU 🗎 pdg

PDG-"If I could remember the names of all these particles, I would have been a botanist" - Enrico Fermi

Gauge & Leptons (e, mu, tau, ne Quarks (Mesons (pi, K, D, Light Unflavored M pi+– PDF PDF pi0

icles that trong interaction	Too	MAN
TRONS + LOUSINS		
g.lbl.gov	④ ① + ==	
SHORTCUTS - CITATION CONTACT A	BOUT	
names of all thes	o narticl	

liggs Bosons	
utrinos, heavy leptons)	
,d,s,c,b,t)	+
B, psi, Upsilon,)	
esons (S = C = B = 0)	
] omega(3)(1670)	PDF
) pi(2)(1670)	PDF

"Periodic table" of hadrons

Hidden symmetry : internal structure

OLAR RIS

QCD lecture - LIP2023 - Mini-school

〈 Search

QCD lecture - LIP2023 - Mini-school

PanScales CC BY-SA

0.001

0.002

Can ve "see" He guarks?

$3 \text{TeV} e^+ e^-$ events

Initial particles in yellow Intermediate particles in blue Final particles in red [details in the web page]

Carlos A. Salgado 5

QCD lecture - LIP2023 - Mini-school

PanScales CC BY-SA

0.001

0.002

Can ve "see" He guarks?

$3 \text{TeV} e^+ e^-$ events

Initial particles in yellow Intermediate particles in blue Final particles in red [details in the web page]

Carlos A. Salgado 5

Jets in hadronic colliders

2 high pT jets (1.3 and 1.2 TeV) with invariant mass 6.9 TeV

QCD lecture - LIP2023 - Mini-school

Run: 276731 Event: 876578955 2015-08-22 07:43:18 CEST

quark up

Two (valence) up quarks + one (valence) down quark + a cloud of quarks, antiquarks and gluons - quantum fluctuations

QCD lecture - LIP2023 - Mini-school

The PROTON

quark up

Two (valence) up quarks + one (valence) down quark + a cloud of quarks, antiquarks and gluons - quantum fluctuations

QCD lecture - LIP2023 - Mini-school

The PROTON

Q(C)

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
 - Asymptotic states.
 - Ż Normal conditions of temperature and density.
 - Ż Nuclear matter (us).
 - Colorless objects. N.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles. Ý

charge=+2/3	u (~5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (~5 GeV)

Colorful objects. color = charge of QCD \longrightarrow vector Ý Similar to QED, but gluons can interact among themselves

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - Fundamental particles. Y

charge=+2/3	u (~5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (~10 MeV)	s (~100 MeV)	b (~5 GeV)

Colorful objects. color = charge of QCD \longrightarrow vector Y. Similar to QED, but gluons can interact among themselves

Gluons carry color charge \longrightarrow This changes everything...

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.

QCD is the theory of strong interactions. \Rightarrow It describes interactions between hadrons (p, π , ...) \Rightarrow Quarks and gluons in the Lagrangian \Rightarrow No free quarks and gluons: Confinement.

- ⇒ Strength smaller at smaller distances: Asymptotic freedom.

Gluons have color charge

Gluons change the color of the quark

[the corresponding vertex in QED does not change the charge of the electron]

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -i \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\lambda^{5} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ i & 0 & 0 \end{array}\right), \ \lambda^{6} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right), \ \lambda^{7} = \left(\begin{array}{ccc} 0 & 0 \\ 0 & i \end{array}\right)$$

Color transformations with the Gell-Mann matrices $t_a = \frac{1}{2}\lambda_a$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ \lambda^4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} 0 \\ -i \\ 0 \end{pmatrix}, \ \lambda^8 = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix},$$

Quark's color - fundamental representation of SU(3)

$$[t^a, t^b] = i f_{abc} t^c$$

Asymptotic freedom

QCD lecture - LIP2023 - Mini-school

 $\mu_R^2 \frac{d\alpha_s}{d\mu_R^2} = \beta(\alpha_s) = -(b_0 \alpha_s^2 + b_1 \alpha_s^3 + b_2 \alpha_s^4 + \cdots)$ Take $b_1 = b_2 = \cdots = 0$ $= -60 M_S$ $d_{s}(\mu) = \frac{d_{s}(\mu_{o})}{1 + b_{o} \alpha_{s}(\mu_{o}^{2})}$ as 421 For Q2>> Aged

QCD 2021] [Particle Data Group

QCD lecture - LIP2023 - Mini-school

 \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy
- ⇒ colorless packages (hadrons) \implies vacuum excitations.

- \Rightarrow In quantum field theory, vacuum is a medium which can screen charge. (quarks or gluons disturb vacuum).
- \Rightarrow confinement \Longrightarrow isolated quarks (gluons) = infinite energy
- \Rightarrow colorless packages (hadrons) \implies vacuum excitations.

€	mas	ses:	
		mass (GeV)	$\sum q_m$ ((
	р	\sim 1	$2m_{u} + m_{a}$
	π	~0.13	$m_u + m_d$

GeV) $_{l}$ ~0.03 ~ 0.02

QCD lecture - LIP2023 - Mini-schoo

V(r) =

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

$$=-rac{A(r)}{r}+Kr$$

Carlos A. Salgado 12

V(r) =

String picture

$$=-rac{A(r)}{r}+Kr$$

V(r) =

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

String picture

$$=-rac{A(r)}{r}+Kr$$

V(r) =

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons. \Rightarrow In the limit $m_q \rightarrow \infty$ the string cannot break (infinite energy)

String picture

$$=-rac{A(r)}{r}+Kr$$

two independent quark sectors

 \Rightarrow However, this symmetry is not observed Solution: the vacuum $|0\rangle$ is not invariant

Symmetry breaking

Chiral symmetry

- In the absence of quark masses the QCD Lagrangian splits into
 - $\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{gluons}} + i\bar{q}_L \gamma^\mu D_\mu q_L + i\bar{q}_R \gamma^\mu D_\mu q_R$
- \Rightarrow For two flavors $(i = u, d) \mathcal{L}_{QCD}$ is symmetric under $SU(2)_L \times SU(2)_R$

 - $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \longrightarrow \text{chiral condensate}$
 - Golstone's theorem \implies massless bosons associated: pions

So, properties of the QCD vacuum Confinement Chiral symmetry breaking Is there a regime where these symmetries are restored? QCD phase diagram

Free quarks and gluons? **Asymptotic freedom:** Quarks and gluons interact weakly at @ Small distances — increase density @ Large momentum — increase temperatures

and unconfined in phase II.

[Cabibbo and Parisi 1975]

Fig. 1. Schematic phase diagram of hadronic matter. $\rho_{\rm B}$ is the density of baryonic number. Quarks are confined in phase I

QCD lecture - LIP2023 - Mini-school

First lattice calculation found a first order phase transition

QCD lecture - LIP2023 - Mini-school

First lattice calculation found a first order phase transition

Including quark masses probably not a first order Present status: several different phases found. \Rightarrow

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — **notably GWs**

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

QCD — rich dynamical content, with emerging dynamics that happens at scales easy to reach in collider experiments — e.g. EoS

Experimental tools

High-energy heavy-ion coll. [high T, low n_B]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) RHIC — pp, dAu, AuAu, CuCu, UU,...

Medium energies HIC [moderate T, high n_B]

RHIC Beam Energy Scan

FAIR at GSI

NICA at Dubna

Cosmological observations — notably GWs

Neutron star coalescence - **low T, high n**_B

Neutron stars

Lattice QCD very challenging at finite μ_B

QCD lecture - LIP2023 - Mini-school

Region relevant for neutron star structure largely unknown

Carlos A. Salgado 17

EoS constraints from GW

[Annala, Gorda, Kurkela, Vuorinen 2018; Annala, Gorda, Kurkela, Nattila, Vuorinen 2019; also Most et al. 2018; Dexheimer et al. 2019 - More recent studies available, not shown]

The existence of quark-matter core found to be a common feature of the allowed EoS

Further constraints for the EoS at higher and higher baryon density in future experiments FAIR, NICA

QCD lecture - LIP2023 - Mini-school

Carlos A. Salgado 18

QCD thermodynamics I

 \Rightarrow In the grand canonical ensemble, the thermodynamical properties are determined by the (grand) partition function

 $Z(T, V, \mu_i) = \operatorname{Tr}$

where $k_B = 1$, H is the Hamiltonian and N_i and μ_i are conserved number operators and their corresponding chemical potentials.

 \Rightarrow The different thermodynamical quantities can be obtained from Z

$$P = T \frac{\partial \ln Z}{\partial V} , \quad S =$$

 \Rightarrow Expectation values can be computed as

 $\langle \mathcal{O} \rangle$:

 $\mathrm{Tr}\mathcal{O}\,\mathrm{ex}$ Trext

$$\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}$$

$$\frac{\partial (T \ln Z)}{\partial T}, \quad N_i = T \frac{\partial \ln Z}{\partial \mu_i}$$

$$\frac{\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}}{\exp\{-\frac{1}{T}(H-\sum_{i}\mu_{i}N_{i})\}}$$

QCD thermodynamics II

makes the change -it = 1/T, with this, the action

$$iS \equiv i \int dt \mathcal{L} \longrightarrow S = -\int_0^{1/T} d\tau \mathcal{L}_E$$

and the grand canonical partition function can be written (for QCD) as

$$Z(T, V, \mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A^{\mu} \exp\{-\int_{0}^{1/T} dx_{0} \int_{V} d^{3}x(\mathcal{L}_{E} - \mu\mathcal{N})\},\$$

conserved net quark (baryon) number.

Additionally, (anti)periodic boundary conditions in [0, 1/T] are imposed for bosons (fermions)

 $A^{\mu}(0, \mathbf{x}) = A^{\mu}(1/T)$

In order to obtain Z for a field theory with Lagrangian \mathcal{L} one normally

where $\mathcal{N} \equiv \psi \gamma_0 \psi$ is the number density operator associated to the

$$(\mathbf{x}), \ \psi(0, \mathbf{x}) = -\psi(1/T, \mathbf{x})$$

QCD thermodynamics III

In order to solve these equations

- \Rightarrow Perturbative expansion
 - obtained.
- \Rightarrow Lattice QCD
- \checkmark Discretization in (1/T, V) space
- Contributions to Z are computed by random configurations of fields in the lattice
- Most of the results for $\mu = 0$ Y

 $\sim \alpha_S(T)$ small for large $T \longrightarrow$ bad convergence, but some results

First example: EoS

Naïve estimation:Let's fix $\mu = 0$, the pressure of an ideal gas (of massless particles) is proportional to the number of d.o.f: $P \propto NT^4$

 $P_{\pi} \propto 3 \times T^4$; $P_{QGP} \propto (2 \times 2 \times 3 + 2 \times 8) \times T^4$

quarks

gluons

Perturbative calculations

Different orders in PT compared to lattice results

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

QCD lecture - LIP2023 - Mini-school

First order: discontinuity in the order parameter

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

QCD lecture - LIP2023 - Mini-school

Second order: discontinuity in the derivative

Order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

QCD lecture - LIP2023 - Mini-school

Cross-over: continuous function

QCD order parameters I

<u>Chiral symmetry restoration</u>: for $m_q = 0$ chiral condensate is the order parameter

 $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \qquad \xrightarrow[T \to \infty]{} \quad \langle 0|\bar{q}_L q_R|0\rangle = 0$

Carlos A. Salgado 25

QCD order parameters II

<u>Confinement</u>: for. $m_q \rightarrow \infty$ the order parameter is the potential

However...

When masses are taken into account the potential is screened even below T_c

Light $\bar{q}q$ pair creation breaks the string

QCD lecture - LIP2023 - Mini-school

[Karsch, Laermann, Peikert 2001]

Physical quark masses

Two order parameters

QCD lecture - LIP2023 - Mini-school

For physical masses, all results indicate a cross over

A possible picture of hot QCD

High energy heavy ion collisions: Collectivity and new phases of QCD

QCD: first levels of complexity at the most fundamental level at scales easy to reach in collider experiments

QCD lecture - LIP2023 - Mini-school

[Confinement; chiral symmetry breaking and mass generation; new phases of matter; hadronic spectra; non-trivial vacuum structure; asymptotic freedom...]

Carlos A. Salgado 30

High energy heavy ion collisions: **Collectivity and new phases of QCD**

QCD: first levels of complexity at the most fundamental level at scales easy to reach in collider experiments

QCD lecture - LIP2023 - Mini-school

[Confinement; chiral symmetry breaking and mass generation; new phases of matter; hadronic spectra; non-trivial vacuum structure; asymptotic freedom...]

Carlos A. Salgado 30

QCD lecture - LIP2023 - Mini-school

Huge number of particles in central PbPb events at the LHC

Produce lage objects Ly Macroscopic in QCD Scale Collide heavy nuclei

Summary

QCD is the theory of strong interactions **QCD** has a rich dynamical content well within experimental reach

- Confinement and chiral symmetry breaking in vacuum
- New phases of matter at high energies/densities
- Quark gluon plasma universal form of matter at high enough energies
- \Box Needed for all phenomenology at hadron colliders (and most of other colliders as well)

— not that much mentioned here but very important...

- Asymptotic freedom allows to perform perturbative computations at large scales However, non-perturbative contributions always present (due to confinement)
- Jets and Parton Distribution Functions (PDFs) two main tools at the LHC
- Huge effort in precision computations at NNLO and more

Youtube video - QGP (in Spanish)

https://youtube.com/watch?v=JdahywF2_D4

Youtube video - QGP (in Spanish)

https://youtube.com/watch?v=JdahywF2_D4