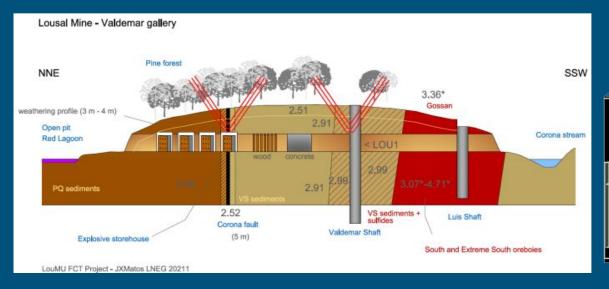
LouMU - Geant / Fast Simulation

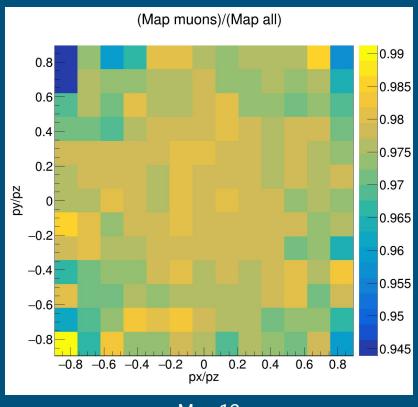

07/02/2023

Lousal Mine

$$flux = \frac{18}{E \times \cos(\theta) + 145} \left(E + \frac{2.7}{\cos(\theta)} \right)^{-2.7} \frac{E + 5}{E + 5/\cos(\theta)}$$

https://arxiv.org/pdf/nucl-ex/0601019.pdf

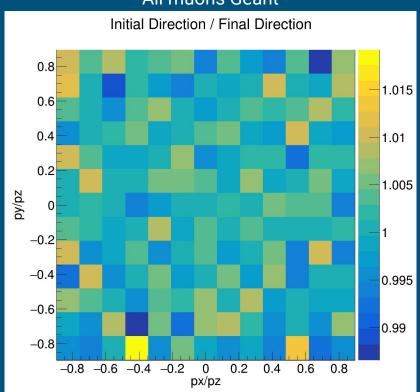
Volume considered in the Geant simulation: 60m x 60m x 18m

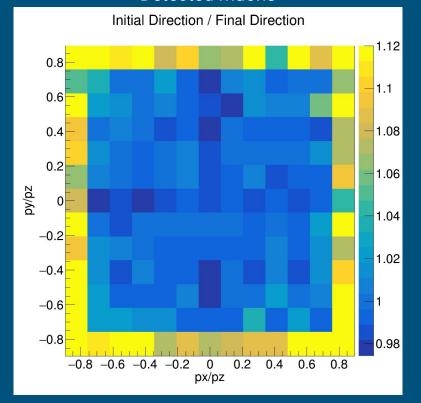

Geant

- Scattering (60m x 60m)
- Interaction with matter
- Electrons
- 5m radius around the detector

Fast Simulation

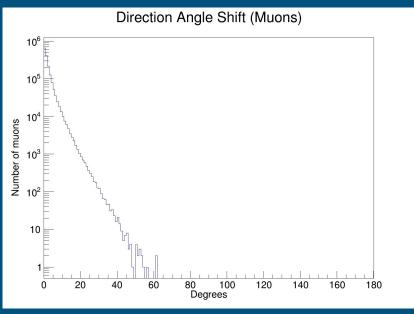
- No scattering (15,5m x 15,5m)
- No interaction with matter
- No electrons
- No "security" radius


Electrons - 2,24% of the detected particles


Map 12

Scattering

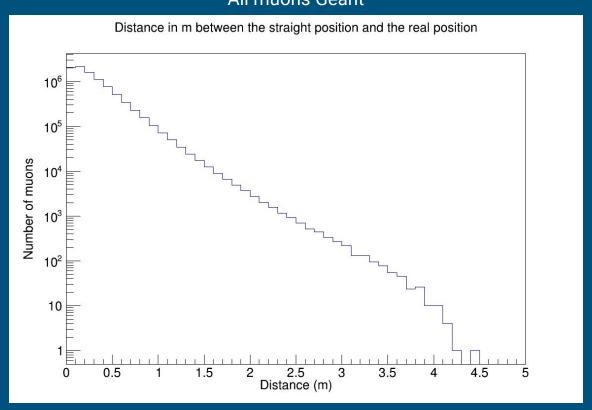
All muons Geant



Detected muons

Direction Angle Shift

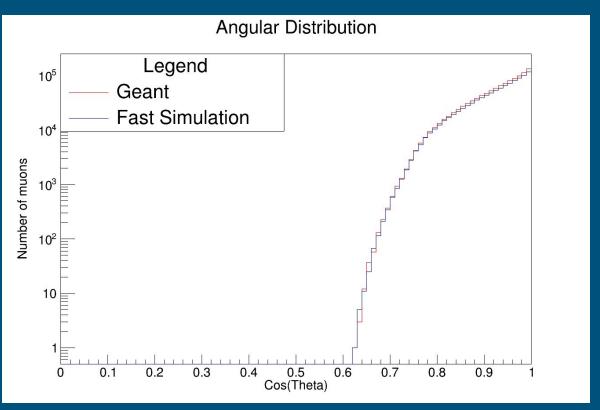
- The pads of the CorePix have an area of 3.8cm x 3.8cm.
- The current distance between planes is 33.5cm.

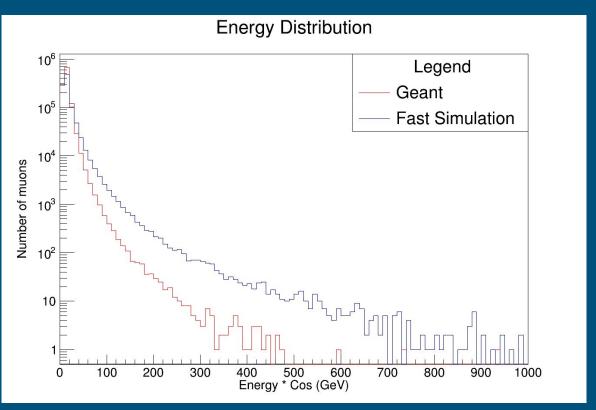

$$R_{13} = \arctan\left(\frac{3.8}{33.5 * 2}\right) = 3.25 \ Degrees$$

$$R_{12} = \arctan\left(\frac{3.8}{33.5}\right) = 6.47 \ Degrees$$

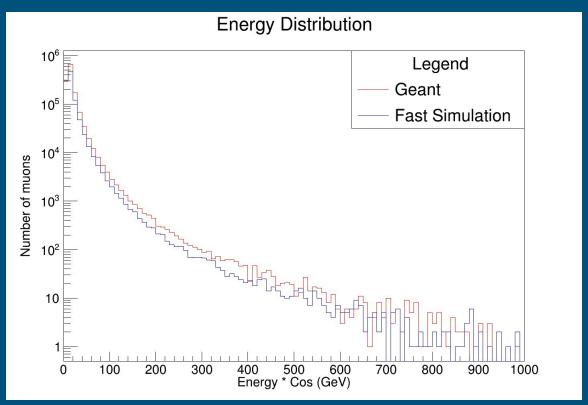
- 21,24% of the muons have a direction angle shift superior to 3.25 Degrees.
- 7,14% of the muons have a direction angle shift superior to 6.47 Degrees .

5m radius

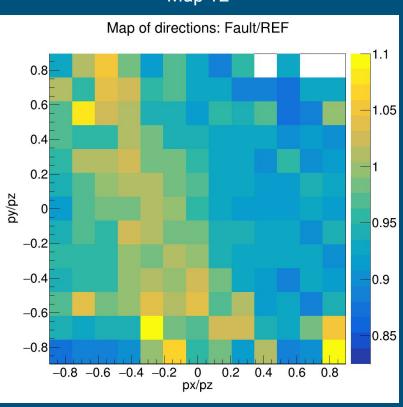

All muons Geant


Fast Simulation
$$flux = \frac{18}{E \times \cos(\theta) + 145} \left(E + \frac{2.7}{\cos(\theta)} \right)^{-2.7} \frac{E + 5}{E + 5/\cos(\theta)}$$

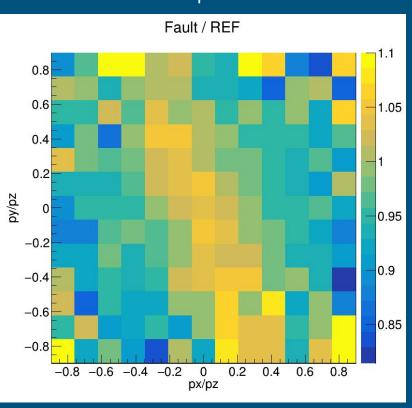
nttps://arxiv.org/pdf/nucl-ex/0	601019.pdf	
	$\frac{\theta,\varphi,p)}{dp} = \frac{18}{p\times\cos(\theta)+145}\left(p+\frac{2.7}{\cos(\theta)}\right)^{-2.7}\frac{p+5}{p+5/\cos(\theta)}$	
Units: cm^{-2} s ⁻¹ sr ⁻¹ Muon momentum p in the in The muon's mass is 105.7 M	sterval $1 \le p \le 10^5$ GeV/c. eV/c ² . We are considering c = 1, so:	
	$E = \sqrt{p^2 + m^2}$	
If we have momentum of 1 C	eV:	
	$E = \sqrt{1 + 0.1057^2} \approx 1.0056$	
	$\frac{E-p}{E}\approx 0.6\%$	
For bigger values of p , this p	ercentage will be even lower, so we can neglect the mass and have $E=p.$	
	$\frac{dI}{dE} = \frac{18}{E \times \cos(\theta) + 145} \left(E + \frac{2.7}{\cos(\theta)}\right)^{-2.7} \frac{E + 5}{E + 5/\cos(\theta)}$	
We now want to write this a	s a function of $E' = E \times \cos(\theta)$.	
	$\frac{dE'}{dE} = \cos(\theta) \iff \frac{1}{dE} = \frac{\cos(\theta)}{dE'}$	
$\frac{dI}{dE} = {E \times}$	$\frac{18}{\cos(\theta) + 145} \left(E \times \cos(\theta) + 2.7\right)^{-2.7} \left(\cos(\theta)\right)^{2.7} \frac{E \times \cos(\theta) + 5\cos(\theta)}{E \times \cos(\theta) + 5}$	
$\frac{di}{dE}$	$\frac{1}{F} = \frac{1}{\cos(\theta)} \frac{18}{E' + 145} (E' + 2.7)^{-2.7} (\cos(\theta))^{2.7} \frac{E' + 5\cos(\theta)}{E' + 5}$	
	$\frac{dI}{dE'} = \frac{18}{E' + 145} \left(E' + 2.7 \right)^{-2.7} \frac{E' + 5\cos(\theta)}{E' + 5} (\cos(\theta))^{1.7}$	
$\frac{dI}{dE'}$	$= \frac{18}{E' + 145} (E' + 2.7)^{-2.7} \left(\frac{E' \times (\cos(\theta))^{1.7}}{E' + 5} + \frac{5(\cos(\theta))^{2.7}}{E' + 5} \right)$	
We have concluded that the	function can be written as:	
	$\frac{dI}{dE'} = F_1(E') \ G_1(\cos(\theta)) + F_2(E') \ G_2(\cos(\theta))$	(
If we define	$f(E') = \frac{18}{E' + 145} (E' + 2.7)^{-2.7}$	(
we can write	E' + 145	,
	$F_1(E') = f(E') \frac{5}{E' + 5}$	(
	$F_2(E') = f(E') \frac{E'}{E' + 5}$	(
The vertical muon flux is ${\cal F}_1$	$(E') + F_2(E') = f(E').$	


Angular distribution

Energy Distribution 1.0



Energy Distribution 2.0


Geant

Map 12

Fast Simulation

Map 12

