Heavy Flavor Physics results from LHC Run I

& prospects for Run 11

Nuno Leonardo, LIP CMS B Physics co-convener

LIP seminar January 8, 2015

Heavy Flavor physics goals

- probe Standard Model
 - both strong and electroweak sectors, through production and decay of heavy hadrons in different media
 - understand flavor structure
 - understand why SM appears so fundamental: no BSM detected in Run I yet
- search for New Physics
 - flavor asymmetries and rare decays can open door to physics BSM
 - complementary to direct searches
 - sensitivity reach to multi-TeV mass scales through loop processes

Detectors

Acceptances @ LHC

Performance

- precision tracking
 - good momentum, impact parameter and vertex resolutions
 - good b-tagging capabilities
- robust muon identification
 - muon detection down to low pT, low mis-identification rates
- flexible trigger
 - high rates imply very selective requirements to store interesting b and c decays
 - majority of HF analyses @ ATLAS and CMS based on single and double muon triggers
- specialization versus general-purpose approaches
 - LHCb benefits from hadron identification detectors, allow to distinguish K vs π vs p, needed to reconstruct hadronic b and c decays
 - ATLAS and CMS have the ability to explore high multiplicity (high-pileup pp, Pb-Pb) collisions, and integrate larger luminosities

Outline

• production (and suppression)

· guarkonia and b-hadrons as QCD probes in different media

spectroscopy

· new states and new decays

properties

· lifetime, flavor tagging, CP violation

• rare decays

· highly suppressed processes with high sensitivity to new physics

• prospects

· flavor physics into high-luminosity LHC running

Production

Quarkonia

- LHC is a heavy-quark(onia) factory
- heavy quark-antiquark states are an ideal system in which to study how strong interaction binds quarks into hadrons
- cross section and polarization calculations up to NLO
 - estimate contributions from color singlet and color octet terms

theory-data comparisons are more reliable at high-p_T, making ATLAS and CMS measurements particularly important

Bottomonia

Bottomonium cross sections

- S-wave measurements up to pT of 100 GeV
 - Tevatron and LHCb data limited to $p_T < 15 GeV$
 - further extension with 2012 data and Run 2
- high-p_T reach allows to probe models with increasing precision

P-wave cross-section ratios

Charmonia

- very good dimuon mass resolution
- accurate reconstruction of lowenergy γ crucial to detect radiative decays of P-wave states
- excellent secondary vertexing
 - crucial for separating prompt and non-prompt components via (pseudo) proper decay time analysis

 $\chi_c \rightarrow J/\psi \chi$

ψ(25)→ J/ψ ππ

Charmonium cross sections

S-wave and P-wave measurements

- extension to unprecedented p_T provides precise input for testing theory predictions
- measurements provided for both prompt and non-prompt production
- disentangle feed-down contributions
 - b-hadron decays (non-prompt)
 - S to IS state
 - P to S states

Quarkonium polarization

- CMS measured polarizations for all S-wave states
 - using the full dimuon angular decay distributions
 - in complementary reference frames
- S-wave results cluster around the unpolarized limit
- P-wave polarizations to be pursued next

Quarkonium production

- cross sections for 7 quarkonia have similar p_T/m shapes (for p_T/m>3)
- polarizations for 5 quarkonia tend similarly to unpolarized limit
 - Ockham hints: all quarkonia dominantly produced by a single mechanism? (e.g. ${}^{1}S_{0}^{[8]}$)

LHC Run I brought about a thorough set of measurements in extended phase space contributing enormously to a clarification of the quarkonium sector

(open-flavor) b-hadron production

- measured production cross sections of various exclusive b-hadron decays: B_u, B_d, B_s, Λ_b
- measurements in good agreement with NLO predictions
- baryon spectra seems to fall faster then meson spectra

Heavy flavor in media

- in addition to p-p, the LHC collides Pb-Pb and p-Pb
- at large energy densities, QCD predicts the existence of a deconfined state of hadronic matter, the quark-gluon plasma
- heavy-flavor states are ideal "hard probes" for studying the properties of medium created in heavy-ion collisions at the LHC
 - Quarkonia expected to undergo *melting* due to color screening
 - > Jets expected to undergo energy loss, relevant to study its flavor dependence

Bottomonia in Pb-Pb

- CMS has reconstructed the 3 Y(nS) states for the first time in heavy-ion collisions
- all 3 states are suppressed in PbPb compared to pp
 - with the excited states, Y(2S) and Y(3S) being more suppressed than the ground state Y(IS)
- self-calibrating double ratio

 $\frac{Y(2S)/Y(1S)|_{PbPb}}{Y(2S)/Y(1S)|_{pp}} = 0.21 \pm 0.07 \,(\text{stat.}) \pm 0.02 \,(\text{syst.}) < 1000 \,(\text{syst.})$

- relative suppression observed (>50)
- as expected in presence of QGP

Charmonia in Pb-Pb

- prompt and non-prompt charmonia separated for the first time in heavy-ion collisions
 - prompt: suppression due to melting
 - non-prompt: suppression due to energy loss
- $\psi(2S)$ vs J/ ψ double ratio indicate
 - suppression for central, high-p⊤
 - ▶ possible enhancement for forward, low-pT
 - not significant (<3 σ), but could be hint of *recombination*

Quarkonium sequential suppression in Pb-Pb

- CMS observes quarkonium sequential melting
- suppression pattern of S-wave states experimentally established: less tightly bound states are most suppressed in the hot medium

Exclusive B meson production in p-Pb

B meson peaks reconstructed for the first time in collisions involving heavy ions

 $B_{\mu} \rightarrow J/\psi K^{+}$

 $B_d \rightarrow J/\psi K^{*0}$

 $B_{\tau} \rightarrow J/\psi \Phi$

- new exclusive probes to study mechanisms of energy loss and its energy dependence
- next: attempt to reconstruct B peaks in Pb-Pb (to come in Run II)

Spectroscopy

 $J/\psi + \pi^+$

 $[B_c(15)]$

• B_c unique system of 2 different heavy quarks

in which to study heavy-quark dynamics

 $J/\psi + \pi^+\pi^+\pi^-$

 $[B_c(15)]$

- B_c unique system of 2 different heavy quarks
 - in which to study heavy-quark dynamics
- CMS measures relative branching fraction
 - → $B_c \rightarrow J/\psi \pi \pi \pi$ *ws* $B_c \rightarrow J/\psi \pi$

 $R_{\rm B_c} = \frac{\mathcal{B}({\rm B_c^+} \rightarrow {\rm J}/\psi\pi^+\pi^+\pi^-)}{\mathcal{B}({\rm B_c^+} \rightarrow {\rm J}/\psi\pi^+)}$

$$= 2.55 \pm 0.80$$
 (stat) ± 0.33 (syst) $^{+0.04}_{-0.01}$ ($au_{
m B_c}$)

 $J/\psi + \pi^+\pi^+\pi^-$

- B_c unique system of 2 different heavy quarks
 - in which to study heavy-quark dynamics
- ATLAS observes new state: B_c⁺(2S)
 - $B_c(2S) \rightarrow B_c \pi \pi \rightarrow J/\psi \pi \pi \pi$ (signif. 5.2 σ)
 - M = 6842 ± 4_(stat.) ± 5_(syst.) MeV
 - compatible with B_c(2S) predicted mass

 $J/\psi + \pi^{+}\pi^{-} [\psi(2S), X(3872)]$

- CMS measures the the production cross section of the exotic quarkonium state X(3872) reconstructed in the $J/\psi \pi\pi$ final state.
 - prompt and non-prompt components are separately extracted
- ATLAS performs corresponding measurements for the $\psi(25)$ state

 $\Upsilon + \pi^+\pi^-$

• CMS and ATLAS search for potential new resonances in $\gamma_{\pi\pi}$ final state. No excess observed \Rightarrow exclusion limits.

 $J/\psi + \chi(e^+e^-)$ χc

 $\gamma + \chi(e^+e^-)$ $[\chi_b(3P)]$

 $J/\psi + \Phi(k^+k^-)$

[Y(4140)]

- Explore the B decay: $B_u \rightarrow Y[J/\psi \phi]K$
- <u>CMS observes two new structures</u> in the J/ψφ mass spectrum
 - Ist peak: $M_1 = 4148.0 \pm 2.4 \pm 6.3$ MeV, $\Gamma_1 = 28 \pm 15 \pm 19$ MeV
 - 2^{nd} peak: M₂ = 4313.8 ± 5.3 ± 7.3 MeV, Γ_2 = 38 ± 30 ± 16 MeV
- Nature of these structures still under investigation
- <u>CMS observes new decay mode</u> $B_u \rightarrow \psi(2S) \phi K^+$

 $J/\psi + J/\psi$

- CMS measures prompt J/ψ pair production
- multi-parton scattering \Rightarrow difficult to address in QCD \Rightarrow experimental input essential
- total and differential cross section measured
 - $\sigma = 1.49 \pm 0.07_{stat.} \pm 0.014_{syst.}$ nb
- evidence of excess at $|\Delta y| > 2.6$ predicted to have a large Double Parton Scattering contribution

 $J/\psi + W/Z$

- measure $J/\psi + V$ associated production
 - single- and double-parton scattering contribute
 - relative color singlet/octet contributions may differ from inclusive production
 - possibility of resonant production from Higgs or NP
- <u>ATLAS observes $J/\psi + W$ and $J/\psi + Z$ (significance >5 σ)</u>

• similar pattern seen in the azimuthal opening angle indicating DPS (+SPS) J/ψ + V production (flat azimuthal distribution o.w. expected from uncorrelated processes)

 $J/\psi + \Xi$

 $\left(\Xi_{b}^{0*}\right)$

 $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$ $\rightarrow \Xi_c^- J/\psi \pi^+$ $\rightarrow \Lambda^0 \pi^- J/\psi \pi^+$ $\rightarrow \mu^+ \mu^- \rho^+ \pi^- \pi^- \pi^+$

complex cascade decay topology

- 4 displaced vertices
- 6 final state tracks

32

- exploring more complex, multi-vertex, multi-resonance topologies
- CMS observes new baryon state: $\Xi_b^{0^*}$
 - neutral excited $\Xi_{\rm b}$ state

- exploring complex topologies
 - without final state di-muon resonance
- LHCb observes new baryon states: Ξ_{b}^{2} , Ξ_{b}^{-*}
 - two new charged additions to the Ξ_b family

- 3 displaced vertices
- 5 final state tracks

CP violation

b-hadron lifetimes Λ_b

- accurate description of the proper decay time dimension crucial for heavy flavor measurements
 - used to separate prompt from nonprompt production
 - a required ingredient for study of timedependent CP asymmetries
- Λ_b lifetime has large experimental uncertainty
 - both experiments provide lifetime measurements for this baryon

 $\tau = 1.449 \pm 0.036 \pm 0.017 \text{ ps}$ m = 5619.7 ± 0.7 ± 1.1 MeV

CMS

 $\tau = 1.503 \ 0.052 \pm 0.031 \ \text{ps}$

 $(PDG: \tau = 1.451 \pm 0.013 \text{ ps})$

• effective lifetime measurements for other b-hadron states and decays also being pursued

5.5

Invariant mass J/\u03c6A [GeV]

Candidates

Proper decay time [ps]

B-B mixing

Flavor tagging

- identification of the B vs <u>B</u> flavor at production
 - a required ingredient to study CP asymmetries
- all experiments have developed oppositeside tagging methods (OST), based on lepton and jet charges
- tagging power (quantifying the method's efficiency and purity)
 - ATLAS: εD²=1.45 ± 0.05 % (muon+electron+jet)
 - CMS: $\epsilon D^2 = 0.97 \pm 0.03 \%$ (muon+electron)
 - LHCb: $\epsilon D^2 = 1.19 \pm 0.06 \%$ (muon+electron+jet+kaon)
- same-side tagging (SST) has been explored in addition at LHCb
 - LHCb: εD²= 0.84 ± 0.11% (kaon)

CP violation

3bodv

5.2

5.3

5.4

5.5

5.6

Invariant K*K mass [GeV/c²]

5.7

-0.4

500 comb

0.35

-0.1

-0.2

-0.3 Ō

0.05

0.1 0.15 0.2 0.25 0.3

(t-t_) modulo (2π/Δm_) [ps]

CP Asymmetry

0.4

 $B, \rightarrow J/\psi \Phi$

- B_s mesons undergo fast particle-antiparticle flavor oscillations (Δm_s), with non-negligible width difference ($\Delta \Gamma_s$)
- flavor-unspecific final states (such as $J/\psi\Phi$) are accessible by both B_s and $\underline{B}_s^{:}$
- weak phase Φ_s arises from the quantum interference between direct and mixing-mediated decays
- the 'golden' channel $B_s \rightarrow J/\psi \Phi$
 - provides an experimentally clean final state ($\mu\mu KK$)
 - 2 vector mesons final state ⇒ mixture of CP-even and CP-odd states
- precise SM predictions for Φ_s (4% uncertainty)
- several new physics scenarios predict enhanced values for Φ_s relative to SM prediction

CP violation in the interference of decay and mixing

$$\Phi_s = \Phi_{mix} - 2 \Phi_{dec}$$

NP can add large phases

 $\phi_s = \phi_s M + \phi_s NP$

 $B_s \rightarrow J/\psi \Phi$

- analysis ingredients:
 - mass and proper decay time
 - flavor tagging
 - angular analysis

 Φ_{s}

[world summary]

Experiment	ΔΓ₅ (ps⁻¹)	¢₅ (rad)	
ATLAS (4.9/fb)	0.053±0.021±0.010	0.12±0.25±0.05	
CMS (20/fb)	0.096±0.014±0.007	-0.03±0.11±0.03	
LHCb (3/fb)	$0.0805 \pm 0.0091 \pm 0.0032$	-0.058±0.049±0.006	

rare decays

rare beauty decays

- processes highly suppressed and precisely predicted in the SM
- complementary to direct searches for new physics
 - access multi-TeV scales through loop contributions
- B_d→K^{*}μμ
 - effective FCNC process
 - allow measurements of many sensitive kinematic variables and asymmetries
- $B_{s,d} \rightarrow \mu \mu$
 - both decays are very suppressed in SM: effective FCNC, helicity suppression
 - branching fractions may be sizably enhanced by NP scenarios: extended Higgs sectors and high-tanβ SUSY

Theory Binned

LHCb

 $A_{\rm FB}$

0.5

--- CDF

🔫 BaBar 🛛 🛨 Belle

- strategy: fit for m($k\pi\mu\mu$), cos(Θ_i), cos(Θ_k) in bins of di- μ mass square (q²), excluding (ψ) resonant region
- observables measured:
 - **A**_{FB}: forward-backward asymmetry of the muons
 - **F**_L: fraction of longitudinal polarization of the K^{0*} •
 - **dB/dq²**: differential branching fraction

- ATLAS - CMS

 $B^0 \rightarrow K^* \mu \mu$

- new set of observables proposed is less sensitive to hadronic form factors
- P₅[']: LHCb measures 4 new observables in 6 bins of q²; one of the 24 measurements deviates from SM by 3.7σ, or 2.8σ accounting for all-bin fluctuations
- possible interpretation as a NP contribution to Wilson coefficient C₉
- interesting (correlated?) tensions with SM prediction
- to be explored with priority with more data and additional decays

 $B_{s,d} \rightarrow \mu \mu$

- selection implemented using multivariate methods (BDT)
- CMS observes the decay: $B_s \rightarrow \mu \mu$

$$BR(B_s \to \mu\mu) = (3.0^{+0.9}_{-0.8} \text{ (stat)}^{+0.6}_{-0.4} \text{ (syst)}) \times 10^{-9} \quad (4.3 \text{ O})^{-9}$$

$$BR(B_d \to \mu\mu) = (3.5^{+2.1}_{-1.8} \text{ (stat+syst)}) \times 10^{-10} \qquad (2.00)$$

- using the full Run I dataset, optimized muon identification, BDT discriminator, categorized unbinned likelihood method
- ATLAS with 5fb⁻¹ data analyzed places upper limit on B_s , $\mathcal{B}(B_s^0 \to \mu^+\mu^-) < 1.5 \ (1.2) \times 10^{-8} \text{ at } 95\% \ (90\%) \text{ CL}$

- presented a selection of heavy flavor results based on LHC Run I data
 - LHC's HF-specialized and general-purpose detectors provide access to complementary phase space: necessary for a complete picture of flavor physics
- Run I highlights include:
 - properties: precision measurements of b and c hadron production and decay
 - spectroscopy: observation of new meson and baryon states and decay modes
 - in media: observation of sequential quarkonium suppression
 - ▶ rare processes: observation of the long-sought $B_s \rightarrow \mu \mu$ decay
- All is in good agreement with standard model so far
 - new physics is becoming constrained in flavor sector
 - possible SM discrepancies and NP hints await more data
- higher energy, luminosity and pileup of coming LHC runs will bring both new possibilities and challenges to flavor physics measurements

Heavy flavor results @ ATLAS, CMS, LHCb in more details: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH http://lhcbproject.web.cern.ch/lhcbproject/CDS/cgi-bin/index.php 49 • the re-discovery of the SM (2010)

perspectives

LHC schedule

	LHC era			HL-LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
ATLAS, CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

• LHC (2010-2022)

- increase pp collision energy to $14 \text{ TeV} \Rightarrow$ beauty cross-section increase x2
- HL-LHC (2025-2035)
 - enable a total integrated luminosity of 3 ab⁻¹
 - average pileup $<\mu>\sim140$, peak luminosity 5×10^{34} cm⁻² s⁻¹
- extreme inst. lumi. / pileup conditions \Rightarrow full detector upgrades
 - major ATLAS/CMS upgrades during LS3 (2023-2025) for HL-LHC

ATLAS & CMS upgrades

- detector upgrades for LHC phase
 - ATLAS fast tracking (FTK) input to HLT (deployment 2015; based on CDF's SVT, which was determining for CDF's B Physics Run II great success)
 - CMS improvements in muon and pixels \Rightarrow vertex resolution, mitigate pileup
- detector upgrades for HL-LHC phase
 - new inner tracking systems: high granularity, less material, high $\eta(\sim 4)$ coverage: \Rightarrow improve detector performance for low p_T , increased resolution
 - track-trigger capabilities: efficiently reconstruct at hardware trigger level tracks with p_T down to 2 GeV ⇒ open new avenues for the general purpose detectors to trigger on heavy flavor signals
 - DAQ: 750kHz @LI, 7.5kHz @HLT

sensitivity: $B_s \rightarrow J/\psi \Phi$

[ATLAS, LHCb]

80

70

p_(B⁰) [GeV]

50

40

60

0.04

0.02

0^L

20

10

30

• knowledge of decay time resolution σ_t crucial for Φ_s measurement

 $A_{CP} \approx (1 - 2w)e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin \phi_s \sin(\Delta m_s t)$ flavor tagging $\int \int angular analysis$

- ATLAS new ID layouts IBL / ITK
 - improve σ_t 30% wrt Run I
 - 14% increase σ_t in Run 2 due to # of PV
- potential will depend strongly on trigger thresholds Run2/3: 6+6GeV, HL-LHC: 11+11GeV

sensitivity: $B \rightarrow \mu\mu$

[CMS, LHCb]

- Sensitivity estimated based on expected detector performance by re-scaling results of Run I analysis
- SM prediction for B_d/B_s ratio assumed
- B_d observation (>5 σ) within reach (HL-LHC)
- theory errors on branching fraction (ratio) will remain smaller than experimental sensitivity
- will explore additional observables with complementary sensitivity, e.g. effective lifetime and possibly time-dependent CP asymmetries

