

CMS-TOTEM Precision Proton Spectrometer

Michele Gallinaro

LIP Lisbon December 18, 2014

Physics motivation
 Expected performance
 Beam pockets
 Tracking and timing detectors
 Planning and summary

Introduction

CERN European Organization for Nuclear Research CE Organisation européenne pour la recherche nucléaire

CMS-TDR-01 TOTEM-TDR-00 5 September 201

CMS-TOTEM

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

https://indico.cern.ch/event/334693/

- Sep. 2013: CMS approves PPS program
- Dec. 2013: Approval of CMS-TOTEM MoU
- Sep. 2014: TDR published
 - baseline design and alternative future solutions
- Dec. 2014: Project approved by LHCC

Detector concept

- The CMS-Totem Precision Proton Spectrometer (CT-PPS) will allow precision proton measurement in the very forward region on both sides of CMS in standard LHC running conditions
- Proton spectrometer uses machine magnets to bend protons
- Two stations for tracking detectors and two stations for timing detectors installed at ~205-215 m from the IP (on both sides)

Experimental challenges

- Ability to operate the detectors close to beam (15-20 σ) to maximize acceptance for low momentum loss (ξ) protons
- Limit RF impedance introduced by beam pockets
 - RPs improved RF shielding
 - R&D on Movable Beam Pipe as future option
- Sustain high radiation levels
 - For 100/fb, proton flux up to 5x10¹⁵cm⁻² in tracking detectors, 10¹²n_{eq}/cm² and 10Gy in photosensors and readout electronics
- Reject background in the high-pileup (μ =50) of normal LHC running

Central Exclusive Production (CEP)

$$pp \rightarrow p+X+p$$

X is a state measured in the central region

- X: $\mu^+\mu^-$, Z, H, ZZ, jets
- +: rapidity gap
- i,j: only photon and gluon exchanges are allowed

4-momentum of X fully constrained by the two proton kinematics

- ξ : proton fractional momentum loss
- t: 4-momentum transferred squared
 - .

Physics motivations

- LHC used as photon-photon collider
 - -Measure $\gamma\gamma \rightarrow W^+W^-$, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$
 - Search for AQGC with improved sensitivity
 - Search for SM forbidden ZZ_{YY}, _{YYYY} couplings
- QCD physics
 - -Exclusive 2- and 3-jet events, M up to ~700-800 GeV
 - Tests of pQCD mechanisms of exclusive production
- Gluon jet factory
 - -Gluon jet samples with small component of quark jets
- Search for new resonances in CEP
 - -Clean events (no underlying pp event)
 - -Independent mass measurement from pp system
 - J^{PC} quantum numbers 0⁺⁺, 2⁺⁺

Main issues addressed

- Physics performance at high luminosity (2x10³⁴ cm⁻² s⁻¹)
 - background from pileup/beam
- Detector operation close to the beam
 - RP and MBP expected performance
 - RF impedance, showers originated in the detectors
- Radiation levels
 - In detector and front-end electronics
- Timing detectors
 - 10/30 ps
- Tracking detectors
 - 10µm, 1µrad, 5x10¹⁵ protons cm⁻²

Detector and physics performance

Simulation

- Generated events are processed through GEANT4 simulation of CMS central detector, and standard reconstruction chain
- Protons are tracked through the beam-line to tracking and timing detector position
 - Simulation includes beam energy dispersion, beam crossing angle, smearing due to beam divergence, vertex smearing
- Fast simulation of PPS detectors takes into account detector segmentation and resolution
 - Time resolution of 10ps (baseline) and 30ps (conservative) considered
 - Tracking detectors: position resolution of $10\mu m$ at z=204-214m
- Beam induced background is included
 - Simulated event-by-event simulation based on data at PU=9 and extrapolated to PU=25,50

Beam optics

Horizontal distance to beam center in the z-range of the PPS detectors

- HECTOR, a fast simulator for particle transport in a beam-line
- good agreement with MADx
- Full transport line simulation in CMSSW

Detector acceptance

Acceptance: X vs Y (includes ξ ,t ellipses) •Particle gun (t, ξ , ϕ) based on HECTOR at \sqrt{s} = 13 TeV

Detector resolution: t, ξ

- Compare generated and reconstructed values
- Resolution of the t and ξ variables

Detector resolution: mass

- Mass acceptance and resolution vs M_X
- PPS selects exclusive systems in 300-1700 GeV range (ε>5%)
- At 15σ acceptance larger by a factor of two (wrt 20σ) for lower masses
- Mass resolution ~1.5% at 500 GeV

Physics processes

Exclusive dijets

- -high jet p_T events (M_{ii} up to~400-500 GeV)
- -test of pQCD mechanism of exclusive production

Exclusive WW

- –quartic gauge boson coupling WW $\gamma\gamma$
- -sensitivity to anomalous couplings

Exclusive dijets

- Signal: ExHuME (pp→gg→dijets)
- PU: Pythia 8 (MB, PU50, PU25)

Kinematical distributions

Kinematical distributions (cont.)

Track multiplicity

- Exploit the exclusivity of signal events to discriminate against large QCD multijet background
- Count number of tracks in regions of η/ϕ around the jet system

Arbitrary -80.0 Arbitrary

0.06

0.05

0.04

0.03

0.02

0.01

0

10 20

Yields per 1/fb – Pileup=50

Selection	Exclusive di	jets	DPE		SD		Inclusive d	lijets
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±7	100	$290 imes 10^3$	100	$2.6 imes10^6$	100	$2.4 imes 10^{10}$	100
≥ 2 jets ($p_{\rm T}$ >100 GeV, $ \eta <2.0)$	287±5	44	$36 imes 10^3$	12.2	$270 imes 10^3$	10	$4.4 imes 10^8$	1.8
PPS tagging (fiducial)	77±3	12	$23 imes 10^3$	7.8	$39 imes 10^3$	1.5	$0.5 imes 10^8$	0.2
no overlap hits in ToF detectors	54±2	8	$18 imes 10^3$	6.3	$25 imes 10^3$	1.2	$0.3 imes 10^8$	0.12
ToF difference, Δt	32 (27)±2	5	$14(11) \times 10^{3}$	4.8	$6 imes 10^3$	0.3	$95~(180) \times 10^4$	$4 imes 10^{-3}$
$0.70 < [R_{\rm jj} = (M_{\rm jj}/M_{\rm X})] < 1.15$	20 (16)±1	3.1	43 (39)±8	0.01	200 (250)±40	0.01	$45 (85) \times 10^3$	$2 imes 10^{-4}$
$\Delta(y_{ m jj}-y_{ m X}) < 0.1$	15 (12)±1	2.3	10 (11)±4	-	12±10	-	$5~(9) \times 10^3$	-
$N_{ m tracks}$	5 (4)±1	0.8	1.3 (1.5)±0.5	-	1±1	-	$40(77) \pm 1$	-
≥ 2 jets ($p_{\rm T} > 150$ GeV, $ \eta < 2.0)$	2.5 (1.9)±0.2	0.4	0.4±0.2	-	0±1	-	$20~(36)\pm1$	-

⇒ S/B ~ 1/8

Yields per 1/fb – Pileup=25

Selection	Exclusive di	jets	DPE		SD		Inclusive d	ijets
	events	ε (%)	events	ε (%)	events	ε (%)	events	ε (%)
total number of events	652±5	100	$290 imes 10^3$	100	$2.6 imes10^6$	100	$2.4 imes10^{10}$	100
≥ 2 jets ($p_{\rm T}$ > 100 GeV, $ \eta < 2.0)$	250±4	38	$25 imes 10^3$	8.7	$190 imes 10^3$	7.6	$3.4 imes 10^8$	1.4
PPS tagging (fiducial)	50±2	8	$15 imes 10^3$	5.1	$12 imes 10^3$	0.5	$0.1 imes 10^8$	0.05
no overlap hits in ToF detectors	43±2	7	$14 imes 10^3$	4.8	$10 (18) \times 10^3$	0.4	$0.1 imes 10^8$	0.04
ToF difference, Δt	30 (23)±2	4.6	$11 (9) \times 10^{3}$	3.8	$3 imes 10^3$	0.1	$0.3~(0.6) imes 10^{6}$	1×10^{-3}
$0.70 < [R_{ m jj} = (M_{ m jj}/M_{ m X})] < 1.15$	20 (15)±1	3.1	15 (14)±3	0.01	85 (110)±15	-	$16 (30) \times 10^3$	1×10^{-4}
$\Delta(y_{ m jj} - y_{ m X}) < 0.1$	15 (12)±1	2.4	6 (4)±2	-	3 (11)±3	-	$1.8(3.4) \times 10^3$	-
$N_{ m tracks}$	7.4 (5.8)±0.4	1.1	0.8 (0.6)±0.3	-	1±1	-	$19~(35)\pm1$	-
≥ 2 jets ($p_{\rm T} > 150$ GeV, $ \eta < 2.0)$	3.5 (2.6)±0.2	0.5	0.2 (0.1)±0.1	-	1±1	-	$9(17) \pm 1$	-

⇒ S/B ~ 1/3

WW production

Study of process: pp→pWWp

- Clean process: W in central detector and "nothing" else, intact protons can be detected far away from IP
- Exclusive production of W pairs via photon exchange: QED process, cross section well known

• Events:

- -WW pair in central detector, leading protons in PPS
- Studied only $e\mu$ final state
- SM observation of WW events

– σ_{WW} =95.6 fb, σ_{WW} (W>1TeV)=5.9 fb

- Anomalous coupling study
 - -AQGCs predicted in BSM theories
 - -Two points: $a_0^W/\Lambda^2 = 5x10^{-6}$, $a_C^W/\Lambda^2 = 5x10^{-6}$

 \boldsymbol{p}

p

PPS timing vs. z-vertex

- Use timing to reject background
- Keep:
 - -~99% of signal events
 - $-\sim 10\%$ of inclusive WW
- Two scenarios: 10ps and 30ps

Kinematical distributions

- SM vs AQGC: missing mass provides good separation
- Information from PPS

PPS and central detector

- Multiplicity of "extra tracks" associated to dilepton vertex
- Requiring <10 tracks keeps 80% of signal, 5% of bkg

Yields (in fb)

- Select WW events
- Apply central lepton and PPS acceptance cuts
- Additional timing and track multiplicity cuts
- Inefficiency due to overlapping hits in timing detectors is taken into account
- Number in parenthesis are for time resolution of 30ps

Selection		Cross section	(fb)	
	exclusive WW	exclusive WW	inclusive WW	exclusive $ au au$
		(incorrectly reconstructed)		
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	0.86 ± 0.01	N/A	2537	$1.78 {\pm} 0.01$
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$0.47 {\pm} 0.01$	N/A	1140±3	$0.087 {\pm} 0.003$
opposite sign leptons, "tight" ID	$0.33 {\pm} 0.01$	N/A	776±2	$0.060 {\pm} 0.002$
dilepton pair $p_{\rm T} > 30~{\rm GeV}$	0.25 ± 0.01	N/A	534±2	$0.018 {\pm} 0.001$
protons in both PPS arms (ToF and TRK)	0.055 (0.054)±0.002	0.044 (0.085)±0.003	11 (22)±0.3	0.004 ± 0.001
no overlapping hits in ToF + vertex matching	0.033 (0.030)±0.002	0.022 (0.043)±0.002	8 (16)±0.2	0.003 (0.002)±0.001
ToF difference, $\Delta t = (t_1 - t_2)$	0.033 (0.029)±0.002	0.011 (0.024)±0.001	0.9 (3.3)±0.1	0.003 (0.002)±0.001
$N_{ m tracks} < 10$	0.028 (0.025)±0.002	0.009 (0.020)±0.001	0.03 (0.14)±0.01	0.002±0.001

Yields vs distance to beam

Potential enhancement of sensitivity with closer approach:

- Signal yield grows by ~x2 when going from 15 σ to 10 σ
- Background is more or less flat

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LIP seminar - Dec. 18, 2014

AQGC yields (in fb)

Table 7: Cross section (in fb) for the expected exclusive WW events due to anomalous quartic gauge couplings, for different values of anomalous coupling parameters (a_0^W and a_C^W) after each selection cut (for a timing resolution of 10 ps). In case of different values, numbers in parentheses are for a timing resolution of 30 ps. Only the eµ final state is considered. Statistical uncertainties are shown.

Selection	Cross se	ction (fb)
	$a_0^W/\Lambda^2=5\cdot 10^{-6}{ m GeV^{-2}}$	$a_C^W/\Lambda^2 = 5 imes 10^{-6}{ m GeV^{-2}}$
	$(a_{C}^{W} = 0)$	$(a_0^W = 0)$
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	3.10±0.14	1.53 ± 0.07
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$2.33{\pm}0.08$	1.00 ± 0.04
opposite sign leptons, "tight" ID	$1.82{\pm}0.08$	$0.78 {\pm} 0.03$
dilepton pair $p_{\rm T} > 30~{ m GeV}$	$1.69{\pm}0.07$	$0.68 {\pm} 0.03$
protons in both PPS arms (ToF and TRK)	0.52 (0.50)±0.04	0.18 (0.17)±0.02
no overlapping hits in ToF detectors	0.35 (0.32)±0.03	0.12 (0.11)±0.01
ToF difference, $\Delta t = (t_1 - t_2)$	0.35 (0.32)±0.03	0.12 (0.11)±0.01
$N_{\mathrm{tracks}} < 10$	0.27 (0.24)±0.03	0.11 (0.10)±0.01

AQGC expected limits

Beam pockets

- Approaching the beam:
 Roman Pots (RPs)
 - Movable Beam Pipe (MBP)
- RP is more mature solution
 - -To be tested in 2015 exploratory phase
- MBP pursued in parallel
 - -Low impedance
 - -Joint project of LHC/experiments

Roman Pot

- Tests of TOTEM RPs at high luminosity revealed issues (vacuum, beam dumps, heating)
- Improvements carried out
 - -New RF shielding in standard box-shaped RPs
 - -New cylindrical RP for timing detectors
 - $-10 \ \mu m$ thick copper coating
 - -New ferrites

RP studies

- Impedance simulation
- RF tests in the lab
- GEANT simulation of shower production
- FLUKA simulation of fluence at Q6

	Distance from the beam [mm]	$\frac{\Im Z^0_{\text{long}}}{[\text{m}\Omega]}$	$\begin{array}{c} \text{fraction} \text{of} \\ (\frac{\Im Z_{\text{long}}}{n})_{\text{LHC}}^{\text{eff}} \\ \textbf{(90 m}\Omega) \end{array}$	$\overline{\Im Z_{\rm trans}^{\rm driving}}$ [MΩ/m]	$egin{array}{ccc} { m fraction} & { m of} \ \Im(Z_{ m x})_{ m LHC}^{ m eff} \ (25{ m M}\Omega/{ m m}) \end{array}$	Heating [W] I=0.6 A
	1	1.7	< 1.9 %	0.15	< 0.6 %	62
Box RP	5	1.3	< 1.4 %			52
	40 (garage)	0.41	< 0.45 %			10
	1	1.1	< 1.2%	0.11	< 0.5 %	13
Cylindrical RP	5	0.73	< 0.81 %			11
	40 (garage)	0.18	< 0.20 %			4
Shielded	1	1.2	< 1.3%	0.2	< 0.8%	10
RP	40 (garage)	0.30	< 0.33 %			2

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LIP seminar - Dec. 18, 2014

RPs installed

All services are installed (cables, cooling, etc.)

45-ALL

un 14

Movable Beam Pipe

- Main body of MBP in stainless steel
- Copper coated for RF shielding and Non-Evaporative Getter (NEG) coated
- Interior surface tapered into a conical shape to reduce RF impedance effects
- At 1mm, RF impedance estimated at 0.05% (trans) and 0.5% (long)
- Thin-window (0.3mm) in AlBeMet alloy (38% aluminum, 62% beryllium) to minimize multiple scattering

Tracking detectors

- Position and angle, combined with beam magnets, allow to determine momentum of scattered proton
 - Position resolution: ~10 μm
 - Angular resolution: ~1-2 μ rad
- Slim edges on side facing beam
 - Dead region: ~100 μm
- Tolerance to inhomogeneous irradiation
 2x10¹⁵ n_{eq}/cm² close to beam (for 100/fb)
- Baseline: 3D silicon pixel detectors

Tracking detectors (cont.)

- 3D silicon sensors (manufactured by FBK/CNM)
- PSI46dig ROC, with same readout as Phase I CMS upgrade pixel system
 - -Existing CMS DAQ components and software can be reused
- 6 detector planes per station
 - -Detectors are tilted

-Number of planes provide redundancy

Tracking detectors (cont.)

6 detector planes per station

For each plane:

- 16x24 mm² 3D silicon pixel sensors
- 150(x) x 100(y) μm² pixel pattern (same as CMS pixel detectors)
- 6 PSI46dig ROC (52x80 pixels each)

- 3D sensors consist of array of columnar electrodes
 - Mature technology (ATLAS IBL)

36

Features wrt to planar sensors:

- Low depletion voltage (~10V)
- Fast charge collection time
- High radiation hardness
- Slim edges (dead area of ~100-200µm); active edges with dead area reduced to few µm
- Spatial resolution comparable to planar detectors

Beam tests: preliminary results

- FBK 3D sensors with 200 μm slim edges coupled to new PSI46dig ROC tested at Fermilab
- Measurements with irradiated detectors (from 1x10¹⁵ to 1x10¹⁶ n_{eq}/cm²) ongoing, results promising

Preliminary results

Space Resolution for FBK_11-37-02 ($\theta = 0^{\circ}$)

RP cooling system

- RP cooling system may handle up to 50W of heat released by on-detector electronics
- RPix estimate: <10W per package
- Use existing TOTEM cooling system

- Detector
- Temperature measured on testpoints on the detectors (circles) and on the hybrids (square) for a heating power of 2W and 3W (open and solid markers)

Timing detectors

- Proton timing measurement from both sides of CMS allows to determine the primary vertex, correlate it with the central detector's, reject pileup
 - Time resolution 10ps→2mm
 - Reasonable segmentation
 - Radiation hard
 - Minimize impact on beam

Timing detectors (cont.)

Baseline

- Cerenkov light in quartz radiator bars
- QUARTIC module:
 - -20 (4x5) 3x3 mm² L-shaped bar elements
 - $-200\;\mu\text{m}$ wire grid separating bars
- Installation foreseen by end of 2015

Photosensors

- SiPMs Hamamatsu MPPC S12572-050
 - -Qualified for 10¹² n/cm² (CMS HCAL)
 - -Low afterpulse
 - -Increased leakage current may impact time resolution
- Possible use of GInP photosensors (Shashlik Phase2 option)

SiPM readout board

Beam tests

- Test modules with 30 and 40 mm radiator bars
- Time resolution σ =36 ps (30 mm bar)
 - Time difference between L-bar and reference signal
 - -2-in-line \Rightarrow 25ps (improvements possible)

Gas Cherenkov option

- GasToF: gas Cherenkov detector with direct detection of very forward light cone
 - Tests with single-anode MCP-PMTs showed time resolution of ~15 ps for singlephotoelectron signals
- GasToF design uses Photonis 8x8 anode MCP-PMTs
 - 12 cm long filled with the C4F10 at 2 atm produce signal of 7 pe's per proton
 - -MCP has transit time spread of 35 ps
 - -Expected time resolution per proton of 15 ps

GasToF simulation

- GEANT study: capability to distinguish two or more protons in the detector
- MCP channel occupancy is expected at 10% for physical protons (after optimization)

Average number of pe's (before collection efficiency) on the MCP PMT 64 ch for protons (μ =50)

Readout system

- Amplifier & discriminator NINO and high resolution HPTDC chips
- Time resolution of readout is 20 ps
- Integrated with PPS DAQ (tracking+timing)
- Readout rate limit is 5 MHz/channel
 - Quartic 3x3mm² rate too high above PU=25

R&D on timing detectors

Solid state as future alternative

• Diamonds, silicon-based

Motivation

- Radiation-hardness
- Fast signals
- Finer segmentation reducing channel occupancy
- Thin and light, allow multiple layers N
 - reducing nuclear interaction
 - Time resolution ~1/sqrt(N)

Diamond detectors

- Appropriate characteristics
 - -Fast signals
 - -Detector pixel size does not affect signal response
 - -Adjustable geometry

Requires R&D on frontend electronics

- Small charge signal from diamond sensor (6k e) implies very low noise electronics
- -Good timing requires fast electronics

Requires R&D on radiation and rate effects

Timing silicon detectors

- Based on Low-Gain Avalanche Diodes (LGAD)
 - -Output signals 10 times larger than traditional silicon sensors
- Requires R&D on frontend electronics
- Requires R&D to improve radiation resistance

Avalanche Photo Diodes

- Avalanche Photo Diodes (APDs)
 - -preliminary tests show good time resolution
- Requires R&D on frontend electronics
- Requires R&D to improve radiation resistance
 - -tests ongoing
- Requires improved characterization/understanding

Timing system

- PPS will be integrated in the CMS Trigger Control and Distribution System (TCDS) as additional partition
- It requires a complementary timing system with low jitter (<1 ps) replica of master clock
 - System developed in CMS based on system at SLAC Linac Coherent Light Source (LCLS)
 - -System developed in Totem (FAIR at GSI)

Trigger strategy

Two photon physics

- Lepton final states captured by lepton triggers
- Trigger efficiency expected to be high, as lepton thresholds are 30 GeV or below
- Final states with hadronic decays of one W or one tau accessible using lepton+jet triggers

Hadronic physics

- Large inclusive QCD jet background
- L1 timing trigger selecting events in the tails of the zvertex distribution

Planning

- Exploratory phase followed by a production phase until LS2
- Exploratory phase (2015-16)
 - -Prove ability to operate detectors close to beam-line at high luminosity
 - Show that PPS does not prevent stable operation of LHC beams, does not affect luminosity performance of machine
- In 2015:
 - Evaluate RPs in 204-215 m region
 - -Demonstrate timing performance of Quartic baseline
 - -Use Totem silicon strip detectors
 - -Integrate PPS detectors into CMS trigger/DAQ system
- In 2016:
 - Upgrade tracking to pixel detectors
 - Upgrade timing detectors if required/possible
 - -Evaluate MBP option

M. Gallinaro - "CMS-TOTEM Precision Proton Spectrometer" - LIP seminar - Dec. 18, 2014

Institutes and responsibilities

	Infrastructure	RP	MBP	Tracking sensors	Tracking readout	Timing sensors	Timing readout	Trigger & timing	Offline SW
CMS									
Belgium Louvain			x			x			x
Brazil UERJ CBPF					x		x		x x
CERN									
CMS TC group	x	x	x						
Torino Genova			x	x x	x x	x			x
Iran Tehran			x				x		x
Portugal						x	x	x	x
Russia IHEP Protvino						x			x
US Fermilab Livermore Kapess						x		x	
Rockefeller						x	x		x
TOTEM									
CERN	x	x	x			x		x	x
Czech Republic Prague Pilsen	x	x				x		x	
Finland Helsinki						x			x
Italy (INFN) Bari Pisa/Siena	x x					x x		x x	x x
Collaboration CommonFund	x								

10 countries20 institutes93 people

Cost estimate

Cost of baseline detector: 550 kCHF

Area	Item	Cost (kCHF)
Tracking	Sensors	150
detector	Front-end electronics	60
	Back-end system	30
	Mechanics	10
	Services	20
	Tracking detector total	270
Timing	Sensors & mechanics (Quartic)	40
detector	Front-end electronics	60
	Back-end system	30
	Services	70
	Timing detector total	200
Timing &	Reference timing system	40
Trigger	Trigger system	40
00	Timing & Trigger total	80

Grand Total

Cost of R&D prototypes: 400 kCHF

Area	Item	Cost (kCHF)
	High granularity Quartic	30
Timina	Gastof prototypes *)	70
dataatara	Diamond prototypes	50
detectors	Timing silicon prototypes	50
	Timing integrated electronics	50
	Timing R&D total	250
	Moving Beam Pipe prototype mechanics	30
Beam pockets	MBP motorization (for one prototype)	50
-	Two additional cylindrical RPs	70
	Beam pockets R&D total	150

Grand Total	400

*) Cost corresponds to two detectors (2x 35 kCHF). The second detector will be built after results of the TB measurements

RP expenditures in 2013-14: 438 kCHF

Area	Item	Cost (kCHF)
RP Infrastructure *)	Tracking RPs: Relocation of four RP stations. RP Faraday cages.	87
	Timing RPs: Two cylinder RPs stations. Prototypse and final production. Movement system. Infrastructure (cables, cooling, vacuum, LV). Ferrites.	322
	Development	29
	RP Infrastructure total	438

*) Cost includes CERN services manpower

550

Schedule of construction

Timing detectors	
Before 16/01/2015	Complete module design. Order components.
Before 31/03/2015	Assemble prototype module at Fermilab. NINO boards delivered.
Before 17/04/2015	Deliver prototype module for beam tests.
Before 30/05/2015	Beam tests with a reference time counter.
Before 31/7/2015	HPTDC boards delivered.
Before 31/08/2015	Construct four modules and deliver to CERN.
Before 30/09/2015	Beam tests of four modules with readout electronics.
October 2015	Ready for installation.
T 11 1 4 4	
Tracking detectors	
Before 15/2/2015	Pre-production of sensors at FBK and CNM.
Before 15/2/2015 Before 15/5/2015	Pre-production of sensors at FBK and CNM. Test of sensors. Final decision of manufacturer. Delivery of flex- hybrid pre-prod.
Before 15/2/2015 Before 15/5/2015 Before 15/7/2015	Pre-production of sensors at FBK and CNM. Test of sensors. Final decision of manufacturer. Delivery of flex- hybrid pre-prod. Launch production of final sensors. Delivery of the portcard pre- production.
Tracking detectors Before 15/2/2015 Before 15/5/2015 Before 15/7/2015 Before 30/9/2015	 Pre-production of sensors at FBK and CNM. Test of sensors. Final decision of manufacturer. Delivery of flex- hybrid pre-prod. Launch production of final sensors. Delivery of the portcard pre- production. Launch production of mechanical supports, flex-hybrids and portcards.
Tracking detectors Before 15/2/2015 Before 15/5/2015 Before 15/7/2015 Before 30/9/2015 Before 15/12/2015	 Pre-production of sensors at FBK and CNM. Test of sensors. Final decision of manufacturer. Delivery of flex- hybrid pre-prod. Launch production of final sensors. Delivery of the portcard pre- production. Launch production of mechanical supports, flex-hybrids and portcards. Delivery of final sensors, mechanical supports, flex-hybrids and portcards.
Tracking detectors Before 15/2/2015 Before 15/5/2015 Before 15/7/2015 Before 30/9/2015 Before 15/12/2015 Before 30/1/2016	 Pre-production of sensors at FBK and CNM. Test of sensors. Final decision of manufacturer. Delivery of flex- hybrid pre-prod. Launch production of final sensors. Delivery of the portcard pre- production. Launch production of mechanical supports, flex-hybrids and portcards. Delivery of final sensors, mechanical supports, flex-hybrids and portcards. Delivery of bump-bonded detectors.

Summary

- PPS will allow precision proton measurement in the very forward region on both sides of CMS in standard LHC running conditions
- Studied physics and detector performance
 - -Timing resolutions of 10ps and 30ps
 - Distance from beam at 15 σ and 20 σ
- Improves sensitivity to SM and BSM physics
- Tracking and timing detector options
 - -Baseline vs R&D
- Exploratory/consolidation phase in 2015/2016
- Challenging small-scale project within short time range

Organizational chart

Machine induced backgrounds

- Use TOTEM data at μ=9
- Account for pileup protons (from simulation) to estimate beam background only
- Extrapolate from μ =9 to μ =50

