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What are neutrinos?

- Uncharged particles

- They don’t interact electromagnetically

- Interact very weakly

- Could be their own antiparticles

- Very light particles

- Appears in three different ways 

- electron neutrino (νe)

- muon neutrino (νμ)

- tau neutrino (ντ)



SNO+: Detector Components and Characteristics 

Acrylic vessel

~9400 photomultiplier tubes 
(PMTs)

Ultra-pure fine water

Ropes system 

Data acquisition electronics  



Machine learning project 

Problems: 

- Radioactive backgrounds from:
- Natural radioactivity from the scintillator  
- Natural radioactivity from the detector 

components
- Radioactivity from cosmic rays

- Appearance of alpha and gamma particles

Goal: 

- Train a model that can distinguish between beta and 
gamma particles



Data type: Root -> Ttree (read using uproot)

Each event was simulated on the center of 
the detector and with energy around 2.5 MeV

Data for 2 types of events (beta and gamma):
- Around 250k events recorded for each type

- Around 800 hits each event
- 6 data values each hit (the 4 later of each we´re going to use on the analysis)

- Indexes (event, hit)
- Position (x, y, z, time)

In total, around 1e+9 ints and 2e+9 floats of data (lots of data).

Data analysis
#Abrir os ficheiros de dados
data_e = uproot. open("snop_e.root" )["data"]
data_g = uproot. open("snop_gamma.root" )["data"]
print(data_e.show ())

name                 | typename                 | interpretation                
---------------------+--------------------------+------------------
--
event                | int32_t                  | AsDtype('>i4')
hit                  | int32_t                  | AsDtype('>i4')
time                 | float                    | AsDtype('>f4')
x                    | float                    | AsDtype('>f4')
y                    | float                    | AsDtype('>f4')
z                    | float                    | AsDtype('>f4')



Illustration of enabled PMTs for a single beta and gamma event



Number of hit PMT’s per event, integrated over all events 

Blue      - Beta
Orange - Gamma 



Distribution time of hit over all PMT over all events

Blue      - Beta
Orange - Gamma 

Blue      - Beta
Orange - Gamma 



Data pre-processing

- Changed data from Cartesian coordinates 
to spherical coordinates for better memory 
and processing power efficiency

- Data filtering (removed Nan’s)
- Quality cut in time, from around 30 to 70 ns 

(later hits are mostly due to re-triggers and 
indirect light)

- 80% of data for training and 20% for 
validation

- Data normalization

#------------------------------------------------
r = math.hypot (x,y,z)
theta_e = np.arccos (z/r)
phi_e  = np.sign (y) * np.arccos (x/sqrt(x**2+y**2))

#------------------------------------------------
Tmed_e[np.where(np.isnan(Tmed_e)==True)] = 0
Pmt_e[np.where(np.isnan(Pmt_e)==True)]  = 0
Tmed_g[np.where(np.isnan(Tmed_g)==True)] = 0
Pmt_g[np.where(np.isnan(Pmt_g)==True)]  = 0

#------------------------------------------------
X_train, X_test, y_train, y_test = 
train_test_split (X,target,test_size= 0.2,random_state= 0) 

#------------------------------------------------
X_train = StandardScaler ().fit_transform (X_train)



AI Model - First Iteration 

Model:
- 1 input neuron for each PMT (~9400 input neurons)

- Hit time
- Some dense layers to let the model learn
- (Maybe some convolution layers?)
- 2 neurons as output

- Beta
- Gamma

Problem:
- Too intensive in processing power 
- Inefficient
- Since there are around 800 hits per event, most of the input neurons aren’t used for a single event
- No need to know what PMT’s activated in specific due to the spherical symmetry of the system

#------------------------------------------------
model = tf.keras.models.Sequential ([
  tf.keras.layers.Flatten (),
  tf.keras.layers.Dense (128, 
activation=tf.nn.relu ),
  tf.keras.layers.Dense (128, 
activation=tf.nn.relu ),
  tf.keras.layers.Dense (2, 
activation=tf.nn.softmax )
])
opt = tf.keras.optimizers.Adam (learning_rate= 0.001)
model.compile(optimizer=opt ,
              loss= 'mean_squared_error' ,
              metrics= ['accuracy' ])



AI Model - Second Iteration 

Model:
- Data grouped in regions
- 2 input neuron for each division of the sphere

- Mean hit time of that region
- number of PMT’s activated on that 

region
- Dense layers
- 2 neurons as output

- Beta
- Gamma



Number of hit PMT’s and mean time with half spheres



Number of PMT’s activated and mean time with quarter 
spheres



Number of PMT’s activated and mean time with quarter 
spheres



Results
model.fit(xs, ys, epochs=10)
model.evaluate (np.array(X_test, dtype=float),  np.array (y_test, 
dtype=float))

Epoch 1/10
12501/12501 [==============================] - 33s 3ms/step - loss: 
0.2500 - accuracy: 0.5009
Epoch 2/10
12501/12501 [==============================] - 32s 3ms/step - loss: 
0.2500 - accuracy: 0.4989
Epoch 3/10
12501/12501 [==============================] - 34s 3ms/step - loss: 
0.2500 - accuracy: 0.4997
Epoch 4/10
12501/12501 [==============================] - 32s 3ms/step - loss: 
0.2500 - accuracy: 0.4995
Epoch 5/10
12501/12501 [==============================] - 32s 3ms/step - loss: 
0.2500 - accuracy: 0.4997
Epoch 6/10
12501/12501 [==============================] - 32s 3ms/step - loss: 
0.2500 - accuracy: 0.5005
Epoch 7/10
12501/12501 [==============================] - 32s 3ms/step - loss: 
0.2500 - accuracy: 0.4999
Epoch 8/10
12501/12501 [==============================] - 36s 3ms/step - loss: 
0.2500 - accuracy: 0.5007
Epoch 9/10
12501/12501 [==============================] - 33s 3ms/step - loss: 
0.2500 - accuracy: 0.5000
Epoch 10/10
12501/12501 [==============================] - 33s 3ms/step - loss: 
0.2500 - accuracy: 0.5000
3126/3126 [==============================] - 6s 2ms/step - loss: 
0.5000 - accuracy: 0.5000
[0.49999749660491943, 0.5000150203704834]

for i in range(10):
  a = model.predict ( [X_train[i]])
  b = y_train [i]
  print(np.round(a,3))
  print(b)

1/1 [==============================] - 0s 116ms/step
[0.289 0.711]
1
1/1 [==============================] - 0s 34ms/step
[0.654 0.346]
1
1/1 [==============================] - 0s 32ms/step
[0.704 0.296]
0
1/1 [==============================] - 0s 36ms/step
[0.051 0.949]
1
1/1 [==============================] - 0s 36ms/step
[0.553 0.447]
0
1/1 [==============================] - 0s 34ms/step
[0.677 0.323]
0
1/1 [==============================] - 0s 50ms/step
[0.478 0.522]
1
1/1 [==============================] - 0s 38ms/step
[0. 1.]
1
1/1 [==============================] - 0s 45ms/step
[0.694 0.306]
1
1/1 [==============================] - 0s 38ms/step
[0.613 0.387]
0



Discussion of results  

Conclusions:
- Seems the model wasn’t able to discriminate the events, 

it wasn’t more accurate than flipping a coin. Reasons for 
this may be:

- 4 pixels per event seems way too low
The time distributions are too similar for the means 
of such a large group to hold any significant 
information

- It’s important to consider the geometry of the 
detector. 
The difference in the number of PMT’s that are hit 
doesn’t does not depend on the physics, i.e, is 
random (scintillation light is emitted isotropically)



To do list

- Try different sizes for the sphere divisions
- Try to feed the model not only mean values but also rms.
- Try a cut in time to optimize the difference between the two type of events
- Try different architectures for the deep neural network model
- Try different models, other than deep neural networks
- Try different pre-processing methods and different ways to organize the data
- There’s a measurement we didn’t use for this analysis referred to as Q, as in 

charge of the PMT, may be important.
- Develop methods to analyze events away from the center


