

Future endeavors in Particle Physics

Outline

- Physics motivation
- New big facilities under consideration
- Higgs factory
- The high energy frontier

Not covered:

- The full exploitation of the LHC and HL-LHC potential
- The long-baseline neutrino projects in US and Japan
- Research programs beyond colliders

The Standard Model of Particle Physics

Over the last ~100 years the Standard Model of Particle Physics was established

One of the greatest achievements of the 20th Century Science

17/05/2023, J. Varela

Confirmed experimentally at <1% level

The Standard Model would fail at high energy without the Higgs boson or other 'new physics'.

It was expected that the 'new physics' would manifest at an energy around 1 TeV accessible at the LHC for the first time.

Higgs boson discovery in 2012

- A major discovery in physics
- A new paradigm: the space in the whole Universe is filled with the Higgs field
- The study of the nature and properties of the Higgs boson is a scientific imperative for the next decades

- So far, the measurements at LHC are compatible with the SM predictions
 - Several thousand papers have been published by the LHC collaborations
 - few discrepancies observed are not yet conclusive
- Precision of Higgs related measurements is presently ~20%

Much more data is needed to achieve 1% precision or below

- What is the **nature of the Higgs field?**
- Why do we observe matter and almost no antimatter in the universe?
- Why is the **neutrino mass** so small?
- Are quarks and leptons fundamental particles?
- Why are there three generations of quarks and leptons?

The dark side of the Universe

Experimental cosmology gives strong motivation for new physics:

What is Dark Matter? What is Dark Energy?

95% of the Universe is unknown

The expansion of the Universe is accelerating

Some form of **dark energy** fills the whole space creating a negative pressure Measurements of CMB fluctuations allow precise assessment of **dark matter and energy**.

17/05/2023, J. Varela

- New colliders are necessary to address several of the major, fundamental open questions of particle physics
 - possible composite nature of the Higgs
 - solutions to the hierarchy problem
 - baryogenesis and the electroweak phase transition
 - the nature of dark matter
 - the origin of neutrino mass
 - the structure of possible flavor-changing neutral currents
- Many of the open questions beyond the Standard Model are related to the Higgs scalar sector.

HL-LHC will provide 10 times more data than LHC

Bound to be one of the greatest endeavors of science in the 21st century

17/05/2023, J. Varela

Circular collider with 100 Km circumference:

- Phase 1 (FCC-ee): electron-positron collisions at energy 90-365 GeV
- Phase 2 (FCC-hh): proton-proton collision at energy 100 TeV

- There is overwhelming consensus in the HEP scientific community that an e⁺e⁻ collider as a Higgs factory should be the next highenergy facility.
- Extensive studies showed that the best option is FCC-ee with energy from the Z peak to 365 GeV.

Higgs field = forces of very different nature than the other interactions

- only elementary particle with spin 0 (scalar)
- only particle with self-interaction
- no underlying local symmetry
- no quantized charges
- deeply connected to the quantum structure of the vacuum

The precise knowledge of the **Higgs properties** is essential to our understanding of the deep structure of matter

Higgs precision program is needed to probe physics beyond the SM

High luminosity is needed to achieve large Higgs statistics

 Operation at the Z peak, at the WW threshold, at the HZ cross-section maximum and at the ttbar threshold

Working point	Z, years 1-2	Z, later	WW	HZ	tī	
\sqrt{s} (GeV)	88, 91, 94		157, 163	240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55
Lumi/year (ab ⁻¹ , 2 IP)	24	48	6	1.7	0.2	0.34
Physics goal (ab ⁻¹)	150		10	5	0.2	1.5
Run time (year)	2	2	2	3	1	4
	$5 imes 10^{12} Z$		$10^8 WW$	$10^6 HZ$	10 ⁶ 1	$t\bar{t}$
Number of events				+	$+200 \mathrm{k} HZ$	
				25k $WW \rightarrow H$	$+50 \mathrm{k} WV$	$V \to H$

- Deviations from the SM Higgs properties are described by multiplicative coupling strength modifiers, known as the κ framework.
- Expected precision of Higgs couplings ~1%
- Precision of the total Higgs width ~1.0 %
- FCC-ee can extract the Higgs self-coupling with a precision of ±25%

Coupling modifier	HL-LHC +		
(precision in %)	CLIC ₃₈₀	FCC-ee ₃₆₅	
κ_W	0.73	0.41	
κ_Z	0.44	0.17	
κ_g	1.5	0.90	
κ_{γ}	1.4 *	1.3	
$\kappa_{Z\gamma}$	10 *	10 *	
κ_c	4.1	1.3	
κ_t	3.2	3.1	
κ_b	1.2	0.64	
κ_{μ}	4.4 *	3.9	
$\kappa_{ au}$	1.4	0.66	
BR _{inv} (< %, 95% CL)	0.63	0.19	
BR _{unt} (< %, 95% CL)	2.7	1.0	

- FCC-ee requires a circular tunnel of 100 km circumference
 - Perspective of integrated programme of FCC-ee followed by FCC-hh
- The machine profits from the vast experience accumulated with previous circular e⁺e⁻ colliders.
- Two or more detectors along the ring are possible.
- The complete FCC-ee programme will require a total investment of 11.6 BCHF.
 - The cost of the civil engineering for the FCC-ee is 5.4 BCHF.

- The 100 TeV FCC-hh will represent a major step in energy compared to LHC
- FCC-hh programme includes ion-ion and possibly electron-hadron collisions
- Nb₃Sn superconducting magnet technology for hadron colliders still requires long development to reach 14-16 T.
- Detailed feasibility study of FCC-hh and experiments will be carried in the next 7 years

Total Cost in BCHF:	FCC-ee ^d	250 GeV	365 GeV	FCC-hh (100 TeV) $^{e)}$
	Total	10.5	11.6	28.6

- Possibility of **discoveries in an unchartered mass range**
 - direct production of new heavy states up to tens of TeV
- Ultimate precision in Higgs properties
 - huge integrated luminosity of 30 ab⁻¹ (10x HL-LHC)
 - increase in production cross-section (10-60x HL-LHC)

- Precision on the Higgs selfcoupling of about 5%
- Access to exotic Higgs decays
 with tiny branching ratios

Cost of FCC

- Construction time
- FCC cost/year
- European citizens
- FCC cost/year/citizen

FCC cost per citizen (payed in 30 years)

Other big projects:

- The Manhattan Project
- The Space projects (1957-75)
- International Space Station (over 30 years)

Is it so expensive?

30 Billion €30 years 1 Billion € 500 Million 2 € 60 €

24 Billion \$ 100 Billion \$ 100 Billion €

Is it so long?

- Example: the LEP-LHC programme
 - e⁺e⁻ collider followed by a proton-proton collider in the same tunnel
 - total duration ~60 years

In the eighties, many people in the HEP community thought that it was worth the effort to discover the Higgs

The FCC scenario

Today, the HEP community thinks that it is worth the effort to understand what hides behind the Higgs

17/05/2023, J. Varela

Future endeavors in Particle Physics

Thank you for your attention