

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[HIGGS Physics $H \rightarrow b\bar{b}$ case study]

Rute Pedro | 17th April LIP Course on Physics at the LHC

Today's plan: case study of the $H \rightarrow b\bar{b}$ decay

$H \rightarrow b\bar{b}$: what makes it special?

Reminder: Standard Model Lagrangian

Z = - 4 Fre Fri ナンザガツ + h.c. + Yi Yii Yig + h. c. $+ \left| \mathcal{D} \phi \right|^2 - V(\phi)$

Kinetic term for the Gauge fields and interaction between gluons

Kinetic term for the Fermions and interaction between Fermions and the Gauge fields

Yukawa couplings and mass terms for Fermions

Higgs mechanism: couplings to W/Z, W/Z mass terms, Higgs self-couplings and Higgs potential 4

Reminder: Higgs decay

- Depends on m_h , not predicted by theory
- Two competing contributions to the partial width Γ_i :
 - Increases with coupling strength (with m_f or m_V^2)
 - Decreases with m_f/m_h or m_V/m_h

$$\Gamma(h \to f\bar{f}) \propto m_f^2 m_h \sqrt{1-x} \qquad \text{, with } x = 4m_f^2/m$$

$$\Gamma(h \to VV) \propto m_h^3 (1-x+\frac{3}{4}x^2) \sqrt{1-x} \qquad \text{, with } x = 4m_V^2/m$$

- For $m_h \sim 125$ GeV: b-quarks are the heaviest particles such that $2m < m_h$
- $H \rightarrow b \bar{b}$ dominates the Higgs width
- Measuring it is fundamental to probe non-SM Higgs decays

 $H \rightarrow b\bar{b}$ and W/Z associated production: a long marriage story

Search "channels"

 \bigotimes

Production mode (depends on initial state particles: $pp, p\bar{p}, e^+e^-$) Decay mode (Branching ratios depend on Higgs mass) LEP

 e^+e^- collider (narrow width approximation):

$$\sigma(e^+e^- \to Z) = 0.0671 \frac{\pi}{2} \delta(E_{CM}^2 - m_Z^2)$$

$$\sigma(e^+e^- \to H) = 4.31 \times 10^{-12} \frac{\pi}{2} \delta(E_{CM}^2 - m_H^2)$$
(suppressed by small electron-Higgs coupling)

- The solution: $e^+e^- \rightarrow ZH$, $E_{CM} > m_Z + m_H$

- Maximum E_{CM} reached at LEP: 206 GeV
 - Could only probe H production: $m_H < E_{CM} m_Z = 206 91 = 115 \text{ GeV}$
 - $H
 ightarrow b ar{b}$ by far the dominant decay mode

Tevatron

- $p\bar{p}$ collider, for low Higgs mass:
 - gg → H (via loop): large cross-section but very small sensitivity
 - Golden channel is W/ZH production and $H \rightarrow b\bar{b}$ decay
 - Tevatron legacy Higgs result combining all data from both CDF and DO experiments: Higgs evidence on this channel

$H(\rightarrow b\bar{b})$ at the LHC

Higgs discovery - ATLAS 2012

- Golden channels for Higgs discovery $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow \gamma \gamma$
- We measured the Higgs mass and determined the charge
- Tested against non-SM spin/parity hypothesis

Higgs discovery - CMS

Independently by the two experiments

 $t\bar{t}H$ production (2018) First direct detection of Higgs couplings to quarks

 $H \rightarrow b\bar{b}$ decay (2018) Higgs couplings to d-type quarks

<u>1207.0210</u>

$H \rightarrow b \bar{b}$ across the years

1808.08238

m_{bb} [GeV]

A journey towards $H \rightarrow b\bar{b}$ observation with ATLAS

Signal topology

- W/Z associated production: use leptonic decay of W/Z to trigger the signal
- Mode most sensitive to $H \rightarrow b\bar{b}$
- At least one high p_T jet
- 2 jets identified as the hadronisation of b-quarks ("*b-tagging*")
- 0, 1 or 2 isolated electrons/muons ("*leptons*")

Background processes

W+jets

- Similar final state than signal
- Much larger cross-section
- Exemplifying decay chain, remember:
 - $Z \rightarrow q\bar{q}/\ell^+\ell^-/\nu\bar{\nu}$
 - $W^- \to q' \bar{q} / \ell^- \bar{\nu}$
 - $t \rightarrow W^+ b$ (>99%)

Key factors for identifying $W/ZH(H \rightarrow b\bar{b})$

- Higgs candidate: 2 b-jets
 - Jet finding
 - b-tagging
 - *m*_{bb} resolution
- (0 lepton) $Z \rightarrow \nu \bar{\nu}$:
 - Neutrinos are weakly interacting: yield missing energy
- (1 lepton) $W^{\pm} \to \ell^{\pm} \nu$ and (2 lepton) $Z \to \ell \bar{\ell}$:
 - Reconstruct and identify electrons and muons

Display of a Higgs boson candidate event with zero selected leptons. The event contains two identified b-jets with transverse momenta of 193 GeV and 78 GeV, respectively, with an invariant mass of 123 GeV. The missing energy in the transverse plane is 271 GeV (ATLAS-CONF-2012-161¹).

Run: 204763 49333326 Event: Date: 2012-06-09 Time: 16:08:25 CEST

Display of a Higgs boson candidate event with one selected lepton. The two identified b-jets have transverse momenta of 149 GeV and 86 GeV, respectively, with an invariant mass of 109 GeV. The identified muon has a transverse momentum of 96 GeV, the missing energy in the transverse plane is 139 GeV, resulting in a transverse momentum of the W boson candidate of 209 GeV

Run: 207620 Event: 101402870 Date: 2012-07-29 Time: 00:05:11 UTC

Display of a Higgs boson candidate event with two selected leptons. The two identified b-jets have transverse momenta of 70 GeV and 65 GeV, respectively, with an invariant mass of 122 GeV. The identified electrons have transverse momenta of 63 GeV and 54 GeV, respectively, resulting in a transverse momentum of the Z boson candidate of 115 GeV (ATLAS-CONF-2012-161 2).

Run: 209787 Event: 144100666 Date: 2012-09-05 Time: 03:57:49 UTC

Anatomy of a collider event

- Identify collision vertices and particles:
 - Track-finding
 - Electron/muon ID/ reconstruction
 - Jet clustering
- Measure energy, momenta, electric charge
- Jet flavour
- Event topology

Jets

Quarks/gluons exist confined in bound states (hadrons)

- When produced freely (eg. decay/collision product) they give rise to a shower of particles: jet
 - Fragmentation and hadronisation processes
 - Parametrised by a few phenomenological models

- We infer the quark/gluon properties from the measurement of jets
- Jet clustering from detected cell energy deposits or particle tracks
- Anti-kt algorithm: combines closer/ softer particles first

Jet Flavour identification

Explore unique characteristics of heavy flavour-jets

- "Large" lifetime of b/c-hadrons (~ps)
- Displaced secondary vertex
- Track displacement d_0 (and z_0)
- Soft lepton from b/c hadron decay

Relies on Inner tracking system

BDT for jet flavour identification MV2

Per-jet probability of originating from {b, c, g/u/d/s} partons Boosted Decision Tree with many input variables

- Number of secondary vertices (SV)
- Number of tracks from SV
- SV mass
- Radial distance $\Delta R(\text{track}, \text{jet})$
- Jet p_T, η
- *d*_{0'} ...

Rejection factor of 300 (light-jets) and 8 (c-jets) for 70% bjet efficiency

Stable performance as a function of pile-up

m_{bb} resolution

- Important to get the narrowest possible peak to be sensitive to it
- Higgs candidate formed by the system of 2 b-jets
 - $b_1: (\vec{p}_{b_1}, E_{b_1})$
 - $b_2: (\vec{p}_{b_2}, E_{b_2})$
 - $H: m_{bb}^2 = (E_{b_1} + E_{b_2})^2 + ||\vec{p}_{b_1} + \vec{p}_{b_2}||^2$
- Driven by precision and accuracy of jet energy measurement
- Several improvements (up to 42%):
 - Add \overrightarrow{p} of muon closes to jet axis (account for semi-leptonic decays of hadron in jets)
 - Jet pT correction to account for energy loss due to neutrino emission (derived from signal simulation)
 - $ZH \rightarrow \ell \bar{\ell} b \bar{b}$: use of $Z \rightarrow \ell \bar{\ell}$ recoiling against the $H \rightarrow b \bar{b}$ to constrain jet kinematics

Missing "Energy"

Associated with undetected particles: neutrinos, non-SM candidates for dark matter

Initial momentum in the transverse plane: $\vec{0}$ After collision missing momentum will be: $-\sum_{i} \vec{p}_{T_{i}}$

Rely mainly on the energy deposits in the calorimeters and on muon momentum measurements

- Many components:
 - Electrons, photons, tau-leptons, jets, muons
 - Calorimeter energy deposits/tracks not associated with any of the objects above

Online event trigger Remember: it's impossible to record all the events, collision rate is 40 MHz!

Coloction	0-lepton	$1 ext{-lepton}$		2-lepton	
Selection		e sub-channel	$\mu \text{ sub-channel}$		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	
Leptons	$0 \ loose \ leptons$	1 tight electron 27 CeV	1 tight muon	2 <i>loose</i> leptons with $p_T > 7$ GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T} > 7 {\rm GeV}$ > 150 GeV	$p_{\rm T} > 27 \text{ GeV}$ > 30 GeV	$p_{\mathrm{T}} > 25 \text{ GeV}$	\geq 1 lepton with $p_{\rm T} > 27$ GeV	
$m_{\ell\ell}$	_	,	_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$	
Jets	Exactly $2 / E_{2}$	xactly 3 jets		Exactly 2 / \geq 3 jets	
Jet $p_{\rm T}$		> 20 GeV for $ \eta < 2.5$ > 30 GeV for 2.5 < $ \eta < 4.5$			
b-jets		Exactly 2 b -tagged jets			
Leading b-tagged jet $p_{\rm T}$		$> 45 { m GeV}$			
H_{T}	$>120~{\rm GeV}$ (2 jets), $>150~{\rm GeV}$ (3 jets)	_		_	
$\min[\Delta \phi(ec{E}_{ ext{T}}^{ ext{miss}}, ext{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	_		_	
$\Delta \phi(ec{E}_{ m T}^{ m miss}, ec{bb})$	$> 120^{\circ}$		-	_	
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_	
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	_	
$p_{\rm T}^V$ regions	> 150	$50 { m GeV}$		75 GeV $< p_{\rm T}^V < 150$ GeV, > 150 GeV	
Signal regions	_	$m_{bb} \geq 75~{\rm GeV}$ or $m_{\rm top} \leq 225~{\rm GeV}$		Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)	
Control regions	_	$m_{bb} < 75 {\rm ~GeV}$ ar	nd $m_{\rm top} > 225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges	

Offline event selection

Common selection criteria

C-l-+i	0-lepton	1-lepton		2-lepton	
Selection		$e { m sub-channel}$	μ sub-channel		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	
Leptons	0 <i>loose</i> leptons with $p_{\rm T} > 7 { m GeV}$	$\begin{array}{l} 1 \ tight \ electron \\ p_{\rm T} > 27 \ {\rm GeV} \end{array}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ ≥ 1 lepton with $p_{\rm T} > 27 \text{ GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	_	
$m_{\ell\ell}$	_		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$	
Jets	Exactly $2 / E$	xactly 3 jets		Exactly 2 / \geq 3 jets	
Jet $p_{\rm T}$		$> 20 \text{ GeV for } \eta < 2.5$ > 30 GeV for 2.5 < $ \eta < 4.5$			
$b ext{-jets}$		Exactly 2 b -tagged jets			
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 4	5 GeV		
H_{T}	$> 120~{\rm GeV}$ (2 jets), $> 150~{\rm GeV}$ (3 jets)		-	-	
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	—	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{bb})$	$> 120^{\circ}$		-	-	
$\Delta \phi(b_1, b_2)$	$< 140^{\circ}$		-	-	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		-	-	
p_{T}^{V} regions	> 150	${ m GeV}$		75 GeV < $p_{\rm T}^V < 150$ GeV, > 150 GeV	
Signal regions	_	$m_{bb} \ge 75 { m ~GeV}$ of	or $m_{\rm top} \leq 225~{\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)	
Control regions	_	$m_{bb} < 75 { m ~GeV}$ as	nd $m_{\rm top} > 225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges	

Signal regions Designed to maximise S/\sqrt{B}

Solaction	0-lepton	1-lepton		2-lepton		
Selection		e sub-channel	μ sub-channel			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton		
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	1 tight electron $p_{\rm T} > 27 { m GeV}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ ≥ 1 lepton with $p_{\rm T} > 27 \text{ GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 \mathrm{GeV}$	> 30 GeV	_	_		
$m_{\ell\ell}$	-		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$		
Jets	Exactly $2 \neq E$	xactly 3 jets		Exactly 2 / \geq 3 jets		
Jet $p_{\rm T}$		> 20 GeV > 30 GeV for				
b-jets	Exactly 2 b -tagged jets					
Leading $b\text{-tagged}$ jet p_{T}		> 4				
H_{T}	> 120 GeV (2 jets), >150 GeV (3 jets)	_		_		
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	_		_		
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$	$> 120^{\circ}$	_		_		
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_		
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$	_		-		
$p_{\rm T}^V$ regions	> 150) GeV		$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, > 150 \text{ GeV}$		
Signal regions	-	$m_{bb} \ge 75 \text{ GeV} \text{ or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)		
Control regions		$m_{bb} < 75~{\rm GeV}$ and $m_{\rm top} > 225~{\rm GeV}$		Different-flavour leptons Opposite-sign charges		

Discriminating signal from background

- For signal, the 2 b-jets come from the Higgs decay and are kinematically correlated
- (1 lepton) Attempt to reconstruct the t-quark invariant mass (system $\ell \nu b$): background peak at 175 GeV

400 450 500

m_{bb} [GeV]

 m_{bb}

Boosted Decision Tree for signal identification

- BDT trained on simulated signal and background events
- Improve background and signal separation exploring the events in a multidimensional space
- Partitions the data to increase sample purity
- Finds optimal criteria x_i > c_i to separate data categories

Variable	0-lepton	1-lepton	2-lepton	
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×	
$E_{\rm T}^{\rm miss}$	×	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×	
$p_{\mathrm{T}}^{b_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×	
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×			
$\Delta \phi (ec V, b ec b)$	×	×	×	
$ \Delta\eta(\vec{V}, \vec{bb}) $			×	
$m_{\rm eff}$	×			
$\min[\Delta \phi(ec{\ell},ec{b})]$		×		
$m_{ m T}^W$		×		
$m_{\ell\ell}$			×	
$m_{ m top}$		×		
$ \Delta Y(\vec{V}, \vec{bb}) $		×		
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	

Boosted Decision Tree for signal identification

- BDT output discriminant
- Signal-to-Background ratio (S/B) up to 30% in most sensitive bins

Background control regions

• To obtain pure samples on specific backgrounds

Coloction	0-lepton	1-lepton		2-lepton	
Selection		e sub-channel	μ sub-channel		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton $E_{\rm T}^{\rm miss}$		Single lepton	
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	1 tight electron $p_{\rm T} > 27 { m GeV}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ ≥ 1 lepton with $p_{\rm T} > 27 \text{ GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	_		
$m_{\ell\ell}$	-		_	81 GeV $< m_{\ell\ell} < 101$ GeV	
Jets	Exactly $2 / E_{2}$	xactly 3 jets		Exactly 2 / \geq 3 jets	
Jet $p_{\rm T}$		> 20 GeV for $ \eta < 2.5$ > 30 GeV for 2.5 < $ \eta < 4.5$			
b-jets		Exactly 2	b-tagged jets		
Leading <i>b</i> -tagged jet $p_{\rm T}$		$> 45 { m GeV}$			
H_{T}	$>120~{\rm GeV}$ (2 jets), $>150~{\rm GeV}$ (3 jets)	_		_	
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	_		-	
$\Delta \phi(ec{E}_{ m T}^{ m miss}, bet{b})$	$> 120^{\circ}$		_	-	
$\Delta \phi(\vec{b_1}, \vec{b_2})$	$< 140^{\circ}$		_	-	
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$	-		_	
p_{T}^{V} regions	> 150	GeV		75 GeV < $p_{\rm T}^V < 150$ GeV, > 150 GeV	
Signal regions	-	$m_{bb} \ge 75~{ m GeV}$ or $m_{ m top} \le 225~{ m GeV}$		Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)	
Control regions	-	$m_{bb} < 75 { m ~GeV}$ and	d $m_{\rm top}>225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges	

Background control regions

Statistical data analysis

- Background and signal estimate with Monte-Carlo simulation
- Adjust simulation to data, fit parameters
 - Dominant backgrounds normalisation
 Signal strength factor $\mu = \frac{N_{obs}}{N_{exp}}$
- Simultaneous profile likelihood binned fit to all regions
 - Inputs: BDT output (SR), m_{bb} ($t\bar{t} e\mu$ -CR) and yield (W+HF CR)
 - Floating normalisation of dominant backgrounds
 - Total number of SR+CR: 14

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\overline{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

Statistical data analysis

- Uncertainties
 - Simulation (statistics, modelling)
 - Theoretical (eg. cross-section)
 - Experimental (eg. jet energy)
 - (Plus data statistical uncertainties)
- Enter the fit as "nuisance parameters", i.e., with an a priori value to be constrained by data
- Impact of each uncertainty source quantified as a signal strength uncertainty σ_{μ}

Source of uncertainty	σ_{μ}
Total	0.259
Statistical	0.161
Systematic	0.203

Experimental uncertainties

_	1		
	Jets		0.035
	$E_{\mathrm{T}}^{\mathrm{mbs}}$		0.014
	Leptons		0.009
Ű		<i>b</i> -jets	0.061
	b-tagging	c-jets	0.042
		light-flavour jets	0.009
		extrapolation	0.008
	Pile-up		0.007
	Luminosity		0.023
-	Theoretical a	and modelling uncer	tainties
	Signal		0.094
~			
1	Floating nor	malisations	0.035
	Z + jets		0.055
	W + jets		0.060
	$t\overline{t}$		0.050
ŀ	Single top qu	ıark	0.028
	Diboson		0.054
1	Multi-jet		0.005

MC statistical

0.070

40

1808.08238

41

Results

- Remember...
 - *p*₀ probability that the signal hypothesis is fake
- Analysed 79.8 fb⁻¹ of 13 TeV pp data
 - Observed (expected) significance: $4.9\sigma~(4.3\sigma)$
 - Almost there, but didn't reach the "5o" to claim observation
 - $\mu = 1.16^{+0.27}_{-0.25}$
- Cross-checked with pure cut-based analysis
 - $\mu = 1.06, 3.6\sigma$ (note significance gained with BDT)
- All measurements compatible with SM ($\mu = 1$)

Signal strength	Signal strength	p	Significance		
51 <u>6</u> 1101 501 011 <u>6</u> 011	~	Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09\substack{+0.46\\-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38\substack{+0.46 \\ -0.42}$	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16_{-0.25}^{+0.27}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

ttH Run1 arXiv:1503.05066

Combination with other channels Habemus $H \rightarrow b\bar{b}$!!!

- Observation of $H \rightarrow bb$
 - $VH(H \rightarrow bb)$ combination of Run 1&2 data
 - Combination with other production modes: ttH, VBF+gluon fusion (ggF)

• $H \rightarrow bb$ dominant in VH observation (5.3 σ)

VBF+ggF Run2 arXiv:1807.08639

1808.08238

• Combined with $H \to \gamma \gamma$ and $H \to ZZ^* \to 4l$

Channel	Significance			
	Exp.	Obs.		
$H \to ZZ^* \to 4\ell$	1.1	1.1		
$H \to \gamma \gamma$	1.9	1.9		
$H \to b\bar{b}$	4.3	4.9		
VH combined	4.8	5.3		

All measurements compatible with SM ($\mu = 1$)

<u>1808.08242</u>

CMS counterpart

- Analysis of Run 1&2 pp data
 - Combination of $VH(H \rightarrow bb)$ with other $H \rightarrow bb$ searches in different production modes
 - Observed (expected) significance: 5.6σ (5.5σ)
 - $\mu = 1.04 \pm 0.20$

Snooping through the $H \rightarrow b\bar{b}$ window

What's next?

- Use $H \rightarrow b\bar{b}$ to measure Higgs properties
 - Towards differential cross-section
 - Investigate the HVV and Hbb interaction vertex
 - Higgs boosted regime
- What we may expect from the High Luminosity-LHC

arXiv:1903.04618

Differential cross-section measurements

- Simplified Template Cross Section framework
 - Measure σ in exclusive regions of the phase space
 - Increasing granularity with acquired data
- Probe kinematic properties of Higgs boson in more detail
- All measurements compatible with SM
- Towards measurement of differential σ_{VH}
 - σ_{VH} as a function of p_T^V

Effective Field Theory interpretation of VH cross-section measurements

- Investigate the HVV interaction vertex
- EFT framework
 - Model anomalous Higgs couplings adding extra terms to the SM Lagrangian: $\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \mathscr{L}_{BSM}$
 - Use cross-section measurements to constrain the strength of new operators: $\sigma_{EFT} = \sigma_{SM} + \sigma_{BSM} + \sigma_{int}$
 - c_{HW} and c_W regulate new interaction between H and W/Z bosons
 - c_{HB} and c_B scale new interactions with Z (affect only σ_{ZH} and not σ_{WH})
 - SM limit: $c \rightarrow 0$
- c limited to few percent at 95% CL

Higgs "Boosted" Regime

Collisions with large energy transfer are more sensitive to New Physics effects

- Higgs produced with large momentum (boosted)
- Hadronically decaying particles lead to large-jets, unable to resolve two jets

- Signal reconstructed has a large-R jet
- 2 b-tagged sub-jets inside large-R jet (reconstructed from tracks)
- Other techniques being explored, e.g. using Deep Neural Networks

JHEP12(2020)085

VHbb boosted 2008.02508

"Boosted" $H \rightarrow b\bar{b}$

- S/\sqrt{B} is larger for high momentum
 - Search inclusive in all production modes
 - Observed (expected) significance: $2.5\sigma~(0.7\sigma)$

- Associated W/Z production
 - *p_{TJ}* > 250 GeV
 - Observed (expected) significance: 2.1σ (2.7 σ)
 - $\mu = 0.72^{+0.39}_{-0.36}$ (SM-compatible)

High Luminosity-LHC upgrade

The HL-LHC upgrade will increase the instantaneous luminosity by a factor of 5 to 7

- A lot more data to analyse: 3000/4000 fb⁻¹
- Will reduce statistical uncertainty of the measurements
- High pile-up: simultaneous collisions per bunch crossing $33 \rightarrow 140$
- Noisy environment: ambiguous track reconstruction, collision vertex finding, pile-up energy subtraction,...

HL-LHC prospects

- Sensitivity to Higgs rare processes
- $H \to \mu \bar{\mu}, \ H \to Z \gamma$
- Higgs self-coupling via di-Higgs production

More precise measurements

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

0

0.2 0.4

 $\Delta \mu / \mu$

You can find me at <u>rute@lip.pt</u>

On the importance of precision measurements

Precise tests of SM internal consistency

- The SM has many parameters but not all of them are independent
- Eg: W mass:
 - Sub %-level radiative correction dependent on M_{top}^2 and $\ln M_h$
- Precise measurements of electroweak observables can be used to test internal coherence of the model!!
 - Most sensitive measurements: M_{top}, M_W, M_H

$$M_W^2 = \rho M_Z^2 \cos^2 \theta_W \qquad (\rho - 1) \sim \ln M_H (\rho - 1) \sim M_{top}^2$$

W boson mass measurement

80000

- High precision measurement —> low pile-up
 - Data from 2011 only!
- Consistency test of the SM

