Trapping light for particle detection: the X-ARAPUCA technology

Laboratório de Instrumentação e Física Experimental de Partículas - LIP 19 de Janeiro de 2023

Gustavo Valdiviesso

What is an arapuca?

- The word comes from the Guaraní language and means "bird buster", referring to a classical trap build by the Brazilian natives to catch small animals.
- Despite its rudimentary look, it is a clever and efficient device.
- The basic principle is: "bird goes in and can't get out" (as all traps should do)

What is the ARAPUCA?

- The ARAPUCA is a photon detection device which works by enhancing a commercially available silicon photomultiplier (SiPM).
- In this case, "enhancing" means increasing the collection area and re-tuning its wavelength sensibility.
- The basic principle is: "photon goes in and can't get out" (and that's the analogy).

Ana Amélia Machado and Ettore Segreto

"Let there be Light Traps" by Lauren Biron Symmetry Magazine, 2019 www.symmetrymagazine.org/article/arapuca-let-there-be-light-traps

The ARAPUCA Family of devices

- It comes in different forms, but always with the same characteristic "mosaic" look, due a limitation in the filters manufacturing.
- Cover area goes from tens of cm² up to m².
- These are actually X-ARAPUCAs, which are the second generation (I will explain the difference in a moment).

pTerphenil (pTP) - wavelength shifter 1

pTerphenyl (PTP) emission

- Converts 128 nm light from LAr to its spectrum ~320 to 370 nm.
- Layer is designed to be ~100% absorbent.
- Emission is isotropic, so only 50% of incoming light has a chance of going into the trap.

Dichroic filter - optical band-pass

OP200 Filter

- Interference layers deposited over a glass substrate.
- Designed to allow the pTP spectrum to pass with 45° incidence.
- Average transmission over 80% for the pTP spectrum.

EJ286 - wavelength shifter 2

EJ286

- Light-guide doped with commercial shifter (ELJEN)
- Concentration of dopant enough to make it 100% absorbent over the pTP spectrum.
- Emission is isotropic. Part of the converted light is trapped inside the guide, leading to the SiPM (see next slide).

Conversion + guiding effect

- Due to the combination of refraction indices, ~57% of the converted light is guided.
- The remaining 43% is trapped between the filter and the Vikuiti reflector at the bottom.

Hamamatsu S13360 (SiPM) - Silicon Photomultiplier

Hamamatsu S13360

- Most sensible to the EJ286 emission spectrum.
 - Can be operated at overvoltages, driving the average efficiency to ~50%.
 - Compatible with cryogenic environments.

X-ARAPUCA Numbers

- Maximum theoretical efficiency: 50% x 80% x 57% x 50% < 12%
- Real efficiency measured to be between 2 and 3%
- SiPM area = 48×6 mm² = 288 mm^2 | Collection area = $6 \times 7800 \text{ mm}^2$ = $46800 \text{ mm}^2 \rightarrow$ increase of **162 times**
- Even if we multiply by the efficiencies (we shouldn't but...) 288 x 50% = 144 mm², while 46800 x 2% = 936 mm²

a gain of 6.5 times of effective area

DUNE's Detectors

DUNE's Photon Detection System

- 1500 Modules
- 6000 Supercells
- 36000 filters
- 288000 SiPMs

A little bit of my own work - Simulations

Software Architecture

20

10% specular : 90% lambertial incoming photons Lambertian vs. Specular How much does it affect the efficiency? incoming photons 90% specular : 10% lambertial

• Specularity inside the light guide seems to be around 0.8 and 0.9, given the current efficiency measurements.

 A 10% variation of specularity in this range is not visible to the naked eye, but may explain some models being up to ±0.5% in efficiency.

Simulation Studies - Untrapping

25

Simulation Studies - Thermal expansion

X-ARAPUCA Related publications

The X-ARAPUCA: an improvement of the ARAPUCA device	Enhancement of the X-Arapuca photon detection device for the DUNE experiment	Simulating the X-ARAPUCA, DUNE's next generation light sensors
A.A. Machado ^{<i>a</i>,1} E. Segreto, ^{<i>b</i>} D. Warner, ^{<i>c</i>} A. Fauth, ^{<i>b</i>} B. Gelli, ^{<i>b</i>} R. Máximo, ^{<i>b</i>} A. Pissolatti ^{<i>b</i>} L. Paulucci ^{<i>a</i>} and F. Marinho ^{<i>d</i>}	C. Brizzolari, ^{a,b} S. Brovelli, ^{c,d} F. Bruni, ^{c,d} P. Carniti, ^{b,a} C. M. Cattadori, ^{b,a,1} A. Falcone, ^{a,b} C. Gotti, ^{k,a} A. Machado, ^e F. Meinardi, ^{c,d} G. Pessina, ^{b,a} E. Segreto, ^e H. V. Souza, ^{c,b} M. Spanu, ^{a,b} F. Terranova, ^{a,b} M. Torti ^{a,b}	G. A. Valdiviesso*for the DUNE collaboration
10.1088/1748-0221/13/04/C04026	10.1088/1748-0221/16/09/P09027	10.22323/1.402.0249

Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

DUNE

The DUNE Collaboration

10.1088/1748-0221/17/01/P01005

Thank you.

