Energy correlators in heavy ion collisions: jet substructure and color coherence

Fabio Dominguez IGFAE, Universidade de Santiago de Compostela

> Seminar LIP, Lisbon February 9th, 2023

C. Andres, FD, R. K. Elayavalli, J. Holguin, C. Marquet, I. Moult, arXiv:2209.11236

Heavy-ion collisions

- High-energy nuclei collide producing thousands of particles
- Most of the particles are soft and reach thermal equilibrium, creating a Quark-Gluon Plasma (QGP)
- The QGP is a unique opportunity to study QCD in its deconfined phase
- QGP properties can be studied either through the bulk degrees of freedom which are well described by hydrodynamics, or through hard probes created at the moment of the collision

Heavy-ion collisions

- High-energy nuclei collide producing thousands of particles
- Most of the particles are soft and reach thermal equilibrium, creating a Quark-Gluon Plasma (QGP)
- The QGP is a unique opportunity to study QCD in its deconfined phase
- QGP properties can be studied either through the bulk degrees of freedom which are well described by hydrodynamics, or through hard probes created at the moment of the collision

Hard probes in HIC

- Colorless probes are not affected (photons, Z, W)
- Hadrons and jets lose energy when interacting with the QGP, thus their spectra is suppressed with respect to independent nucleon collisions

Hard probes in HIC

- Colorless probes are not affected (photons, Z, W)
- Hadrons and jets lose energy when interacting with the QGP, thus their spectra is suppressed with respect to independent nucleon collisions

Hard probes in HIC

- Colorless probes are not affected (photons, Z, W)
- Hadrons and jets lose energy when interacting with the QGP, thus their spectra is suppressed with respect to independent nucleon collisions

Jet quenching

Jet quenching

Jet quenching

- Basic principle: colored particles lose energy and slow down when going through the plasma
- Radiative energy loss: stimulated emissions (dominant for light quarks and gluons)
- Back-to-back jets lose different amounts of energy

Medium-induced radiation

- Theoretical advances have $f_{0} = \frac{\omega}{2} = \frac{\omega}{2}$ and ω inderstanding how radiation is enhanced by the medium
 - Energy lost by a high-energy parton can be understood in terms of soft medium-induced radiation
 - Single gluon spectrum understood very well in the soft limit

From energy loss to jet substructure

- For energy loss calculation we only need the soft limit $z \ll 1$
 - Soft divergence of the vacuum vertex

- For jet substructure
 - Emissions from multiple sources
 - Harder vertices

From energy loss to jet substructure

- For energy loss calculation we only need the soft limit $z \ll 1$
 - Soft divergence of the vacuum vertex

- For jet substructure
 - Emissions from multiple sources
 - Harder vertices

From energy loss to jet substructure

zE

- For energy loss calculation we only need the soft limit $7 \ll 1$
 - Soft divergence c

- For jet substruct
 - Emissions from rr
 - Harder vertices

Color coherence in jet quenching

 Antenna calculations show that medium interactions can break angular ordering

- Emergence of a resolution scale

Grooming

- Procedure in which reconstructed jets are reclustered while removing soft radiation to get access to the hardest splitting
- Widely used for jet substructure studies in pp collisions
- Measurement of the splitting function

Grooming

- Procedure in which reconstructed jets are reclustered while removing soft radiation to get access to the hardest splitting
- Widely used for jet substructure studies in pp collisions
- Measurement of the splitting function

Grooming in heavy ion collisions

- Extract angle and energy fraction of the hardest splitting θ_g, z_g and look for modification of its distributions
- Issues with having a robust angular variable from grooming J. Mulligan, M. Ploskon <u>2006.01812</u>
- Proposed grooming procedure for HIC

Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk <u>1911.00375</u>

 $\frac{1}{\Sigma_{\rm vac}} \frac{d\Sigma}{d\theta}$

 $5.\times$

 $1. \times$

 $\frac{d\Sigma_{med}}{d\theta}$

 $\frac{1}{\sum_{med}} \frac{d\Sigma_{med}}{d\theta}$

Energy flux operators

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^\infty dt \, r^2 n^i T_{0i}(t, r\vec{n})$$

The 1-point function measures the total energy flux through an area element

$$\langle \mathcal{E}(\vec{n}) \rangle \propto \sum_{i} E_{i}$$

Sum over all particles going through $\Delta \Omega$

 Energy weighting naturally removes soft physics without grooming

D. Hoffman, J. Maldacena 0803.1467

$$\frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2)\rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma_{ij}}{d\vec{n}_i d\vec{n}_j} \frac{E_i^n E_j^n}{Q^{2n}} \delta^{(2)}(\vec{n}_i - \vec{n}_1) \delta^{(2)}(\vec{n}_j - \vec{n}_2)$$

• 2-point function

$$\frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2)\rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma_{ij}}{d\vec{n}_i d\vec{n}_j} \frac{E_i^n E_j^n}{Q^{2n}} \delta^{(2)}(\vec{n}_i - \vec{n}_1) \delta^{(2)}(\vec{n}_j - \vec{n}_2)$$

As a function of the relative angle only

$$\frac{d\Sigma^{(n)}}{d\theta} = \int d\vec{n}_{1,2} \frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2) \rangle}{Q^{2n}} \delta(\vec{n}_2 \cdot \vec{n}_1 - \cos\theta)$$

As a function of the relative angle only

$$\frac{d\Sigma^{(n)}}{d\theta} = \int d\vec{n}_{1,2} \frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2) \rangle}{Q^{2n}} \delta(\vec{n}_2 \cdot \vec{n}_1 - \cos\theta)$$

• Infrared and collinear safe for n = 1

Energy correlators $e^{E} \qquad e^{\theta} \qquad 1-z$

• For a quark jet at first order, Q = E the energy of the jet

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma_{qg}} \int dz \frac{d\sigma_{qg}}{d\theta dz} z^n (1-z)^n + \mathcal{O}\left(\frac{\mu_s}{E}\right)$$

 μ_s a softer scale over which the cross section is inclusive

- qq and gg contributions are higher order
- Additional energy loss ($E_q + E_g \neq E$) is also subleading

$$z = \frac{E_g}{E}$$

Energy correlators in vacuum

D. Hoffman, J. Maldacena <u>0803.1467</u> H. Chen , I. Moult, J. Sandor, H. X. Zhu <u>2202.04085</u>

 Collinear emissions can be resummed using CFT techniques changing the scaling only by an anomalous dimension

$$rac{d \Sigma^{(1)}}{d heta} \sim rac{1}{ heta^{1-\gamma(3)}}$$
 $\gamma(3)$ is the twist-2 spin-3 QCD anomalous dimension

 Higher-orders, soft physics, quark/gluon ratios can change the overall normalization but not the power-law behavior

 $3\zeta^{(pp)}$

Have not yet been measured

- Analyses done by theorist with CMS open data
- P. T. Komiske, I. Moult, J. Thaler, H. X. Zhu 2201.07800
- Sensitivity to hadronization transition

Sensitivity to top mass in the 3-point function

J. Holguin, I. Moult, A. Pathak, M. Procura 2201.08393

Energy correlators in HIC

- Background is expected to be less of an issue
 - Energy weighting removes most of the soft physics, specially if one increases the power in the energy weighting
 - Uncorrelated background does not affect the shape of the correlations, only the normalization

- Observables are not event-by-event
 - + Fluctuations are less important
 - Requires large statistics
 - Cannot be used to tag events

Energy correlators in HIC
$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma_{qg}} \int dz \frac{d\sigma_{qg}}{d\theta dz} z^n (1-z)^n + \mathcal{O}\left(\frac{\mu_s}{E}\right)$$

- Calculation of inclusive two-particle cross-section in HIC is very challenging
- It is reasonably well understood in the soft limit $z \to 0$ or when all transverse momenta are integrated over, thus losing the angle dependence
- For the energy correlator calculation is is crucial to keep z finite and also the angle dependence
- Some additional assumptions/approximations must be made to evaluate the cross section

Evaluation of in-medium splittings

- Full evaluation keeping z and θ not yet implemented
- Two available approximations:
 - Opacity expansion (N = 1)
 - ★ Unitarity problems can lead to negative cross sections
 - ★ Recursive formulas to generate all orders (not yet implemented numerically)
 - Semi-hard approximation
 - ★ Resums multiple scatterings in the eikonal approximation through Wilson lines in straight-line trajectories
 - * Assumes semi-hard splittings (z not too small)
 - ★ Neglects effects coming from broadening of transverse momenta of produced particles

FD, Milhano, Salgado, Tywoniuk, Vila <u>1907.03653</u> Isaksen, Tywoniuk <u>2107.02542</u>

Sievert, Vitev <u>1807.03799</u>

Evaluation of in-medium splittings

- Full evaluation keeping z and θ not yet implemented
- Two available approximations:
 - Opacity expansion (N = 1)
 - ★ Unitarity problems can lead to negative cross sections
 - ★ Recursive formulas to generate all orders (not yet implemented numerically)
 - Semi-hard approximation
 - ★ Resums multiple scatterings in the eikonal approximation through Wilson lines in straight-line trajectories
 - * Assumes semi-hard splittings (z not too small)
 - Neglects effects coming from broadening of transverse momenta of produced particles

FD, Milhano, Salgado, Tywoniuk, Vila <u>1907.03653</u> Isaksen, Tywoniuk <u>2107.02542</u>

Sievert, Vitev <u>1807.03799</u>

Evaluation of in-medium splittings

- Medium is assumed uniform, with length L
- The strength of the interactions is encoded in the jet quenching parameter \hat{q} , which measures the average transverse momentum transferred per unit length
- Emissions with a long formation time are not sensitive to the medium and therefore are emitted as in vacuum
- Multiple medium scatterings destroy the color coherence between the daughter partons

Time and angular scales

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

• (Vacuum) formation time:

$$t_f = \frac{2}{z(1-z)E\theta^2}$$

$$\theta_L \sim (EL)^{-1/2}$$

Below θ_L all emissions have a formation time larger than L

• Decoherence time:

$$t_d \sim (\hat{q}\theta^2)^{-1/3}$$

$$\theta_c \sim (\hat{q}L^3)^{-1/2}$$

Below θ_c splittings do not color decohere and the medium does not resolve them

If $\theta_L > \theta_c$ then θ_c becomes irrelevant

Time and angular scales

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

• (Vacuum) formation time:

$$t_f = rac{2}{z(1-z)E heta^2}$$
 $heta_L \sim (EL)^{-1/2}$ Below $heta_L$ all emissions have a formation time larger than L

• Decoherence time:

$$t_d \sim (\hat{q}\theta^2)^{-1/3}$$

$$\theta_c \sim (\hat{q}L^3)^{-1/2}$$

Below θ_c splittings do not color decohere and the medium does not resolve them

Time and angular scales

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

• (Vacuum) formation time:

Angular scales

- Three parameters E, \hat{q}, L
- Two competing angular scales

 $\theta_L \sim (EL)^{-1/2} \qquad \qquad \theta_c \sim (\hat{q}L^3)^{-1/2}$

- For $\theta < \theta_L$, splitting occurs outside of the medium, no medium modification is expected
- For $\theta < \theta_c$, the medium does not resolve the splitting, small medium-modification expected

Results

Results

Results

Results

Extracting the behavior of $\theta_{\rm on}$ and $\theta_{\rm peak}$

- Generated the EEC for 248 sets of parameters with $E \in [50,700]$ GeV, $L \in [0.2,10]$ fm, $\hat{q} \in [1,3]$ GeV²/fm
- Extracted scaling behavior of $\theta_{\rm on}$ and $\theta_{\rm peak}$ in terms of the three parameters
- In all regions the onset angle exhibits the same behavior

 $\theta_{\rm on} \sim \theta_L^{1\pm0.1}$

- The peak angle has different behaviors in the two different regimes
 - + For $\theta_L > \theta_c$: $\theta_{\text{peak}}^{\text{DC}} \sim E^{-0.86 \pm 0.1} L^{0.21 \pm 0.1} \hat{q}^{0.36 \pm 0.1} \sim \theta_d^{1.4 \pm 0.1} \theta_L^{-0.4 \pm 0.1}$
 - + For $\theta_L < \theta_c$: $\theta_{\text{peak}}^{\text{PC}} \sim E^{-0.54 \pm 0.1} L^{-0.31 \pm 0.1} \hat{q}^{0.09 \pm 0.1} \sim \theta_c^{-0.2 \pm 0.1} \theta_L^{1.1 \pm 0.1}$

EECs and color coherence

Conclusions

- Energy correlators provide a powerful tool for understanding jets in HIC
 - Experimentally accesible
 - Can be calculated perturbatively thanks to insensitivity to soft physics and uncorrelated background
 - Characteristic features of the calculation for in-medium splittings are clearly imprinted in the observables
- Energy correlators provide a robust angular variable which can be used to probe color coherence in jets in the QGP

Outlook

- Lots of new exciting developments!
- Test other models for the in-medium splitting calculation
 - GLV: Onset angle is not defined as sharply as in the multiple scattering case. Could be used to show the importance of the LPM regime
 - Tilted Wilson lines with Yukawa potential: Onset of coherence is NOT a feature of the harmonic approximation
- Expanding media
 - Using energy correlators to find the relevant angular scales
- Heavy quarks
 - Can be used to measure the dead-cone (calculation in pp coming out very soon)
- Monte Carlo studies
 - Test resilience to background
 - Test the effects of having the full parton shower

Thank you!

In-medium propagator

• Can be formally written in coordinate space in terms of a path integral

$$\mathcal{G}_{R}(t_{2}, \boldsymbol{x}_{2}; t_{1}, \boldsymbol{x}_{1}; \omega) = \int_{\boldsymbol{x}_{1}}^{\boldsymbol{x}_{2}} \mathcal{D}\boldsymbol{r} \exp\left\{\frac{i\omega}{2} \int_{t_{1}}^{t_{2}} d\xi \ \dot{\boldsymbol{r}}^{2}(\xi)\right\} \operatorname{P} \exp\left\{ig \int_{t_{1}}^{t_{2}} d\xi \ A_{R}^{-}(\xi, \boldsymbol{r}(\xi))\right\}$$

Satisfies the following Schwinger-Dyson type equation

And convolution relations

$$\int_{p_2} \mathcal{G}_R(p_3, t_3; p_2, t_2; \omega) \mathcal{G}_R(p_2, t_2; p_1, t_1; \omega) = \mathcal{G}_R(p_3, t_3; p_1, t_1; \omega)$$
$$\int_{p_2} \mathcal{G}_R^{\dagger}(\bar{p}_1, t_1; p_2, t_2; \omega) \mathcal{G}_R(p_2, t_2; p_1, t_1; \omega) = (2\pi)^2 \delta^{(2)}(p_1 - \bar{p}_1)$$

- The locality of the medium averages $\langle A^-(t)A^-(t')\rangle \propto \delta(t-t')$ implies that at any given time:
 - + Averages can be factored into regions with constant number of particles
 - The sum of all momenta in the amplitude is equal to the sum of all momenta in the conjugate amplitude
 - When considering the ensemble of all particles in the amplitude and conjugate amplitude, the overall color state is always a singlet

 $\left\langle \begin{array}{cc} p_0 & p_1 \\ \hline p_0 & p_1 \\ \hline p_0 & p_1 \end{array} \right\rangle = \mathcal{P}_{R_a}(p_1 - p_0; t_1, t_0)$

 $k_1 + q_1 = p_1$ $k_2 + q_2 = \bar{p}_2$

 $k_1 + q_1 = p_1$ $k_2 + q_2 = \bar{p}_2$ $l_1 = (1 - z)k_1 - zq_1$ $l_2 = (1 - z)k_2 - zq_2$

$$\boldsymbol{k}_2 + \boldsymbol{q}_2 = \bar{\boldsymbol{k}}_2 + \bar{\boldsymbol{q}}_2$$

$$\boldsymbol{k}_2 + \boldsymbol{q}_2 = \bar{\boldsymbol{k}}_2 + \bar{\boldsymbol{q}}_2$$

$$l_{2} = (1 - z)k_{2} - zq_{2}$$

$$\bar{l}_{2} = (1 - z)\bar{k}_{2} - z\bar{q}_{2}$$

$$l = (1 - z)k - zq$$

$$\boldsymbol{k}_2 + \boldsymbol{q}_2 = \bar{\boldsymbol{k}}_2 + \bar{\boldsymbol{q}}_2$$

$$l_{2} = (1 - z)k_{2} - zq_{2}$$

$$\bar{l}_{2} = (1 - z)\bar{k}_{2} - z\bar{q}_{2}$$

$$l = (1 - z)k - zq$$

Average depends on l, l_2, \bar{l}_2 , and $k + q - k_2 - q_2$ $S^{(4)}(l, L; l_2, \bar{l}_2, t_2; k + q - k_2 - q_2, z)$