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Flavour, mass and CP”

Neutrino oscillations = m_ =z 0 — rich v phenomenology
Standard Model puzzles need neutrino experiments!
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The origin of matter: last chance for large CPin the SM[1]*
The nature of mass: why are m so small? m, > m,?v="v [10]7

The flavour structure of the SM:

m Lepton mixing very different from the quark sector b m

m Lepton Flavour Universality never tested with vs 1076
e Hints of LFJ: B decays, 1 g-2
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Long-baseline neutrino oscillations
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Neutrino oscillation state-of-the-art

e T2Kworld-leading results enabled by substantial improvements in FD analysis methods:
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o Updated reconstruction and expansion of the fiducial volume [1, 2, 3]
o  New sample, with 2 resolved final-state particles (Neutrino 2022)
e | have convened the T2K FD working group for the last 3 years

T2K preliminary

I 1Rp sample
TZ)R \ | 1 New sample |

+ Muon-like data
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ication of matter-antimatter
olationin néutrinos

DUNE will conclusively
determine the mass ordering
and measure CF

With great statistics come
great systematic uncertainty
challenges!



Understanding bias in v oscillation expenmen’rs

________________
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| demonstrated the potential for bias with an on-axis near detector for the DUNE design reports [4, 5]:
Use machine learning to generate mock data with "adversarial" interaction model.
Mis-modeling is invisible in on-axis near detector.
Produces biased oscillation measurements when far detector mock data is fitted with nominal model.



Precision Reaction-Independent Spectrum Measurement
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| was part of the small team (two postdocs and three faculty) that proposed DUNE-PRISM in 2017.



Detector response in data-driven analyses

67 ton LArTPC with 3D pixel read-out, - - RND (E,,E o ) £ RFD (E,,E oo ) -- 10 kton LAITPC with 3 x 2D wire
segmentation, and downstream muon AL N S R e A e read-out and very large drift
spectrometer volumes

e | developed a data-driven method to correct for acceptance differences using the event geometry [4].
o Implementation of the method is ongoing in collaboration with one postdoc and students at
Stony Brook University, where | am a Visiting Scholar.
e Need a model-independent method to account for differences in the detector responses.
o If an ND event had occurred instead in the FD, what would be its reconstructed energy at the FD?



Learning the differences between ND and FD

o Leadsto model dependence.

CycleGAN arXiv:1703.10593 (2017)

ND response FD response for
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| am Supervising two CERN Junior Fellows on DUNE machine learning project.
Taking advantage of generative models expertise [6].

e Traditional approach: response matrices out of high-level reconstructed variables.

Model ‘ . Curse of

dependence Trade-off dimensionality

e Reduce model dependence by using image-to-image translation techniques to
— photo ' generate FD-like events from ND events at hit level.
o  Nothing like this was ever attempted in HEP!

!
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3D ND Event
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2D proof-of-concept shows promising results.
Next step:
o  ND 3D readout = FD 3x2D readout
o Needs novel neural network
architectures

Data-driven analysis will enable
percent-level systematic
uncertainty requirement in DUNE




Observing neutrinos at the LHC

SND@LHC

SPS



Scattering and Neutrino Detector at the LHC

A & & & & » P s |y
e The possibility of observing neutrinos from LHC pp .
collisions was pointed out in the early 90's 5
o Large fluxin forward region
o Very high neutrino ener VETO
yhig 9 SYSTEM
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e 2/e £ VERTEX DETECTOR AND
. . p p ELECTROMAGNETIC
e \Wide physics reach: CALORIMETER

o yHFOtestswithv /v_andv /v ratios

e Detector technology:
o  Forward charm production measurement

o  Emulsion and tungsten target (800 kg)

= Gluon PDF ot very low x o  Scintillating Fibre EM calorimeter / tracker
o Beyond the Standard Model searches

m Long-lived / feebly-interacting

. system
new particles

Letter of Intent . Approval . Physics data
August 2020 March 2021 June 2022

o  Scintillator and iron hadron calorimeter / muon
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o Raw data transfer out of the DAQ server and backup.
o lwrofe the first draft of the shifter manual. 1
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Neutrino identification in SND@LHC

Neutrino identification strategy:

o Identify candidates in the electronic detector data
o Identify candidates in the emulsion data
o  Match candidates to each other to get complete event

| have developed the analysis tools for the electronic detectors.

Pattern recognition with Muon System

Flavour identification with emulsions
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Charged-current v_ identification with ECal

Fraction of correctly identified events

v CC (1) 78.5%

v_CC (0u) 87.3%

NC (0u) 93.1%

| demonstrated a high purity v CC sample is
achievable using only the electronic detectors.
Developed muon pattern recognition algorithm

based on the Hough transform.

o

Electronic-detector-only neutrino observation possible!

Stafistical separation of v_.CC and NC events using ECal hit pattern
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Taking advantage of event reconstruction expertise [6, 7, 8].
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SND@LHC Neutrino Measurements

Complex interplay of flux and cross sections

Expected number of
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Unique ability to constrain charm production

Significant correlations between parameters of interest
e  Lepfon Flavour Universality tests withv_/v_and v _/v .

o Inferaction
e  Forward charm production — gluon PDF at very low Xx.
o Flux

Solution:

e  Fit all samples simultaneously for all parameters of interest.
o  Same approach taken by T2K [1, 2, 3] and DUNE [4, 5].

Current status:
e | have integrated the GENIE neutrino interaction event
generator in the software framework.
e | amleading an effort to develop neutrino event selection
criteria using the electronic detector data.
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DUNE and SND@LHC at LIP
DUMVE —

DEEP UNDERGROUND : LHC .
NEUTRINO EXPERIMENT Scattering aav:c:hNeeLu:‘%no Detector

e LIP effort focused on calibration
o  Consortium leadership
o Development and construction of
laser calibration source
m To be testedin ProtoDUNE-II

e LIPisafounding member
e Construction of the mechanical structure
of the hadron calorimeter
o Detector alignment / data readiness

e Inboth cases, my research plans leverage and expand the existing efforts at LIP.
o DUNE data-driven analysis < LIP cdlibration expertise.
o  SND@LHC electronic detector data analysis < LIP detector expertise.

e | bring fo LIP world-class expertise in accelerator-based neutrino experiment data analysis.
o There are no active experts on this subject in the country.

Opportunity to strengthen ties between neutrino and collider groups.
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Six-year outlook

SND@LHC 2022
% e First robust observation of neutrinos from pp collisions!
= o  Muon system partly built at LIP is a critical component of this analysis.
% e First SND@LHC physics results with simultaneous fit of all neutrino data. ProtoDUNE Il
e Explore BSM searches with SND@LHC.
c o lamthe LPCC Long-lived Particles convener for SND@LHC
2 o |amthe SND upgrade (AdvSND) BSM contact in the Forward Physics Facility LHC Run llI
g e Final Run Il physics results and detector upgrade for HL-LHC: AdvSND
—1
DUNE

e Develop machine learning tools for near-to-far detector event translation
e Validate DUNE near-to-far event translation using ProtoDUNE Il real data.
o Establish systematic uncertainty for DUNE data-driven sensitivity.
m Directimpact of LIP-led DUNE cdlibration strategy on physics results.
e Data-driven oscillation analysis in place for start of operations (around 2030).
o  Opportunity for leading analysis role at LIP. 2028

Long-term  Short-term
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Thank you for your attention!
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