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Jet tomography from large to small systems

jets as a tool to probe formation of QCD matter
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from elementary to complex

experimental access e.g. 
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How to probe matter?
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jet quenching

jets lose energy propagating through nuclear matter

A tool to probe the QGP formation

calorimeter tower
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The State of the Art

Matter branch:
the latter stages (th+ex)

the early stages (some th)

main tool: hydrodynamics

Jet branch:
jets at latter stages (th+ex)

some jet tomography 

main tool: perturbative QCD

the gap

compromises the success 
of the ongoing and future 

experimental programs 
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close the gap

jets in non-equilibrium/evolving QCD matter
(fluctuating evolving matter)

formation of QCD matter in smaller systems?

formation of complex QCD matter

The State of the Art

Matter branch:
the latter stages (th+ex)

the early stages (some th)

main tool: hydrodynamics

Jet branch:
jets at latter stages (th+ex)

some jet tomography 

main tool: perturbative QCD
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Developments:

Needs:

Puzzles:

Opportunities:

Timing:

jets in hydrodynamic matter 
(e.g. our works during the last year)

evolving QCD matter at the LHC, RHIC, and EIC

collectivity in small systems vs. no jet quenching

the upcoming large and small system experiments 
(e.g. sPHENIX and O+O at the LHC)

the LHC Run 3 (2022 - 2025)
the sPHENIX program at RHIC (2023 - 2025)
the LHC Run 4 (2027+)
the EIC experiment (2030+)

Why now?

a clear big 
problem in 
the field 
to be solved
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What do we have?

• Jets see the matter in HIC (and DIS) at multiple scales, and essentially X-ray it;

• Current theory is based on multiple simplifying assumptions: static matter, no 
fluctuations, etc;

What is missing?

• The coupling of jets to the flow, to the structure (matter anisotropy), to the 
transverse fields during initial stages, to the fluctuations, etc.

• An updated parton evolution equation needed for most modern simulations 
of jets in QCD matter;

• New jet observables sensitive to the medium evolution;

• Coupled simulations of matter and jets for quantitative phenomenology;

Jets in evolving matter

AS, M. Sievert, I. Vitev, PRD, 2021 
J. Barata, AS, C. Salgado, PRD, 2022

C. Andres, F. Dominguez, AS, CS, arxiv, 2022
J. Barata, AS, X.-N. Wang, arxiv 2022

J. Barata, X. Mayo, AS, CS, 2022
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Jet quenching formalisms

QCD broadening and gluon emission
(GLV/BDMPS-Z) with flow

R. Baier et al, NPB, 1997
B. G. Zakharov, JETP, 1997

R. Baier et al, NPB, 1998
M. Gyulassy et al, NPB, 2000
M. Gyulassy et al, NPB, 2001
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Jets in evolving matter
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uniform matter
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• The odd moments of this re-summed final distribution are proportional to the 
transverse flow velocity, while the even moments are unmodified;

• The initial and final distributions are not factorized anymore in coordinate space (due 
to the energy derivative);

uniform matter
Jet broadening
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uniform matter
Jet broadening
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inhomogeneous matter
Jet broadening
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inhomogeneous matter
Jet broadening
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• Opacity 𝜒 ≈ 4
• 𝑢 ≈ 0.7 (about 𝜋/4 to z-axis)
• 𝜇 = 𝑔𝑇 with 𝑔 ≈ 2 and 𝑇 ≈ 500 𝑀𝑒𝑉

What jet energy corresponds to 𝜃 ≈ 1!?

Jet energies:  𝐸 < 50 GeV

uniform matter
Jet broadening
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• Opacity 𝜒 ≈ 4
• 𝑢 ≈ 0.7 (about 𝜋/4 to z-axis)
• 𝜇 = 𝑔𝑇 with 𝑔 ≈ 2 and 𝑇 ≈ 500 𝑀𝑒𝑉
• 𝐿∇𝑇 > 𝑇

What jet energy corresponds to ”𝜃” ≈ 1!?

Jet energies:  𝐸 < 100 GeV

Jet broadening
inhomogeneous matter
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Gluon emission
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• We have already constructed a generalization of the jet quenching theory 
which includes the effects of the medium evolution and structure;

• It still should be further improved to take into account the non-equilibrium 
dynamics and the medium response (and more differential properties: heavy 
flavor, spin effects, etc.)

• Now we can make the next step turning to the actual phenomenology, and 
seek for the relevant observables, sensitive to the medium evolution;

• Having all these elements will allow us to turn to coupled simulations of the 
matter and jet observables, which are needed for quantitative 
predictions/analysis;

Summary


