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Crash course in Quantum Computing

(as seen by someone doing algorithms who was previously in physics and for a physics audience)

— What is a quantum computation?

H Yes/No question . .
U ' “Find whether the expectation of

M=|0)(0| under preparable |} of
n qubits is above or below a

threshold for given n.”

Up — 0 .
{D()WN i <—> Yes/No answer

Time requirements
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Crash course in Quantum Computing

(as seen by someone doing algorithms who was previously in physics and for a physics audience)

— Oracle Model

U — UTOUT—l s OU1 & <O‘ U ‘O) gives you the answer

Then T is the complexity of the algorithm.

- Good for proofs!
- May be a good description of your problem
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Quantum Phase Estimation

Inputs:

U 2™ x 2™ unitary operator

U’lp to prepare |1,D>, l.e., U¢ ’0) = "(p> (Formally: access to controlled Uy, U;L)
‘w> € C?" such that U [¢p) = e'? ) ¢ € 10,2m)
€ > 0 precision parameter

Outputs: ¢ up to precision € with bounded error probability



Quantum Phase Estimation
— Textbook QPE Algorithm

|0) —{H
[0} —{u] ! —
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(Quadratic oracle advantage)



Quantum Phase Estimation

— Kitaev’s/Iterative Phase Estimation Algorithm
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Quantum Phase Estimation

— Faster Phase Estimation

v
0) —HHR.(Mw HHAFE
0) 2 ( ) I |= P(O\gb;H,M)—1+COS(A2/I[¢+9D,
P(1]6:0, M) — 1 —cos(M[qb—FH])-

2

[Ak)

[Submitted on 2 Apr 2013]
Faster Phase Estimation Idea: new “schedules” for M and w
Krysta M. Svore, Matthew B. Hastings, Michael Freedman Plus: Informational perspective



https://arxiv.org/search/quant-ph?searchtype=author&query=Svore%2C+K+M
https://arxiv.org/search/quant-ph?searchtype=author&query=Hastings%2C+M+B
https://arxiv.org/search/quant-ph?searchtype=author&query=Freedman%2C+M

Quantum Phase Estimation

— o-Quantum Phase Estimation

Efficient Bayesian Phase Estimation

Nathan Wiebe and Chris Granade
Phys. Rev. Lett. 117, 010503 - Published 30 June 2016

Accelerated Variational Quantum
Eigensolver

Daochen Wang, Oscar Higgott, and Stephen Brierley
Phys. Rev. Lett. 122, 140504 - Published 12 April 2019

Low depth algorithms for quantum
amplitude estimation

Quantum 6, 745 (2022)

M~1/e,0=p




Quantum Phase Estimation

— Hybridization /Query Perspective

|0>—H-Rz(Mw)TH—mFE P0]6: 6, 1) — LT os(MIo+ 0]

1 ]:\2/[ 9 ; P(z|6:0. M) 1—|—(—1)$C(;S(M[¢-|—9])
— +
M) M — P[o;0,01) =~ 0D
Classical Sampling Fully Coherent Hybrid (a-QPE)
|0) | HH R.(M HH~AEE 0) —HHR R (M HH~AFE
0) {H}{HHAF =T TR
|/\k> U [ Ak) UM [ Ak) uM
< Plus Kitaev schedule < Plus o-QPE adaptative schedule
D = 0(1) trivially D = 0(1/6) D — O(l/el_a)
N=0(1/e) i T = O(1/¢ T = O(1/e )
T=NxD=5D=0(1 62) By inspection of the schedule Stated in the paper (adapted)
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a-Higenvalue Estimation

— Quantum Singular Value Transformations

1. Block-Encode a Matrix

%
[/ = = A® |0X0| + - --

[] — p(A) =

2. Choose a suitable polynomial

p € Rlz*]
ip(z)| <1 for x € [—1,1]
p has partiy d

EZAp()LV<\ 3

X

A=) AN



o-Higenvalue Estimation

— “Phase Estimation is a weaker form of Eigenvalue Estimation”

Plan: PE < AE <X EE

Define:
Amplitude Estimation Eigenvalue Estimation

HeHy H|y) = E)

A|0™) = /p|good) + /1 — p? |bad)
Uy is a (7, m)-BE of H

O 4 |good/bad) = + |good /bad) 3
Uy [0™) = [4)

Input: A, AT, O4,¢>0 Input: Uy, Up, UL, v, €>0

Output: |p| up to € with bounded error probability Output: £ up to € with bounded error probability



o-Higenvalue Kstimation

— “Phase Estimation is a weaker form of Eigenvalue Estimation”

PE < AE

m_/ U¢ U

A= l
a{ H H

A|0™)]0) = cos(¢/2) [¢) [0) —isin(p/2) [¢) 1)

1
cos(¢/2) ~ |¢|

AE < EE
a{ H T T H
- m// Q QT L

Q= A(2[0™)0™] — 1)ATO4
(0, Unr [0) Uy |07) = (1 = 2p)Uy [0™)

I

p=(1-2p)~p



o-Higenvalue Kstimation

Now note:

= If we focus on EE (and find an interpolation for EE) we solve everything else

If you can solve the decision problem Then you can solve EE with a binary search

{_

= iright

left

L N



Figenvalue Estimation
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P(Ar) |0) [Ar) =~10) [A)



o-Higenvalue Kstimation

~ QSVT




Figenvalue Estimation

(P(ﬁ) ) = U [0) | A) = P(Ag) [0) [Ak) + [1) uy) =1} |u;)

AN
Must be unitary!



Figenvalue -

+stimation

Aux. qubit = 0
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o-Figenvalue Estimation

— Decision problem

= If you can implement a step function, you can solve EE.



o-Higenvalue Kstimation

— Decision problem

= If you can implement a step function, you can solve EE.

.. Can you implement a step function?
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o-Higenvalue Kstimation

— Decision problem
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Let Uy be a (v, m)-block-encoding of a Hermitian matrix H and pug € [0, 7].
Then, there is a (1, m + 3)-block-encoding of P (H_‘“”I; 0, n), where P satisfies

Y+1o
Va € [-1,-6],0 < P(x;0,n) < n/2 (1)
and Vz € [0,1],1 —n/2 < P(x;4,n) <1, (2)

using O (% log(%)) queries of Uy and U};.

(Adapted from lemma 5)



—

o-Higenvalue Kstimation

— Decision problem

0.5

Let Ug be a (v, m)-block-encoding of a Hermitian matrix H and po € [0,7].
Then, there is a (1, m + 3)-block-encoding of P (%, d, 77), where P satisfies

Vo € [-1,-0],0 < P(x;0,n) < n/2 (1)
and Vz € [§,1],1 —n/2 < P(z;6,n) <1, (2)

using O (% log(%)) queries of Uy and UL.
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o-Higenvalue Kstimation
— Bringing it all together

What scalings do we get as a function of €7

P (Bias of the distribution)

Need at least this resolution {

\

1— 277 by Chebyshev’s inequality
2

N = O(1/(1-2n)?)




o-Higenvalue Kstimation

— Bringing it all together




o-Figenvalue Estimation

— a-Eigenvalue Estimation

..which is the a-QPE scaling.



In Conclusion

* a-Quantum Phase Estimation can be “upgraded” to a-Eigenvalue
Fstimation

* You can think of the problem as “how well can I approximate a
step function”

* Quantum Singular Value Transformations might be a good tool
for finding hybrid algorithms

 (Think: what do I need to do if I only have a poor approximation of my
target function — and what is my target function)
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