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Introduction

• To describe the light reflected or transmitted by 
common materials;


• Understanding the light collection is important in 
scintillation detectors in order to improve their 
sensitivity. The light collection depends on the way the 
light is reflected in the internal surfaces.


• We aim to have a physically based model, that can be 
adapted to a Monte-Carlo model and be 
computationally inexpensive.


• We should be able to measure the parameters of the 
model and adapted it to different situations

• For example: measuring the reflectance in the air and 

extrapolate it to a liquid interface.

• Additionally, we plan could adapt these models to 

image rendering in computer graphics.
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Outline
• Basics

• Snell Law and Fresnel Formulæ


• Principles of Radiometry (science of measurement of 
optical radiation at any wavelength, based simply on 
physical measurements);


• The specular reflection:

• The Beckmann spizzichino model

• Shadowing-masking


• The diffuse reflection:

• Radiative Transfer

• Diffuse Reflectance

• Diffuse Transmission

• The Effect of the Interface
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Laws of Reflection and Refraction

• An electromagnetic plane wave that reaches a boundary 
between two homogeneous media with different optical 
properties is split into two parts, a reflected wave and a 
transmitted wave, towards directions given by the laws 
of reflection and refraction:
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Claudio Ptolomeu, fl. 150 CE

4.1 Reflection and Refraction of a Plane Wave

The majority of the models that are addressed in this chapter are not restricted to
the scattering of electromagnetic waves but can be adapted to the reflection of other
type of waves such as acoustic waves [146] or seismic waves [147].

4.1 Reflection and Refraction of a Plane Wave

An electromagnetic planewave that reaches a boundary between two homogeneous
media with different optical properties is split into two parts, a reflected wave and a
transmitted wave, towards directions given by the laws of reflection and refraction

θr = θi (reflection) (4.3a)

n0 sin θi = n sin θt (refraction) (4.3b)

where n and n are the indices of refraction in the incoming and transmitted medium.
When a wave propagates from an optical denser (higher index of refraction) medium
into one optically less dense it can occur total internal reflection for angles larger than
sin θi > n0/n.

The index of refraction of an absorbing medium is a complex number given by
ñ = n + iκ. The intensity of the transmitted electromagnetic wave decreases in this
according to the exponential I(z) = I0 exp (−z/ζ), where ζ is the attenuation length
of the electromagnetic wave in the material. This attenuation length is related with the
extinction coefficient, κ, of the medium and the wavelength in the vacuum, λ, through
the relation

κ =
λ

4πζ
(4.4)

This length is dependent of the material itself and the wavelength of the radiation.

For significative values of k the equations 4.3a and 4.3b cannot be directly applied.

The Fresnel formulæ

The equations of Fresnel relate the amplitudes of the reflected and transmittedwaves
at a given interface between two different media. These equations are usually written
separately for each polarization components, parallel (p) and perpendicular (s) to the
plane of incidence. For an interface between a non-absorptive medium and an absorp-
tive medium [148], the ratio of the amplitudes of the electric field is squared

Fs =
(nθ − cos θi)

2 + κ2θ
(nθ + cos θi)

2 + κ2θ
(4.5a)

Fp = Fs

[

(nθ − sin θi tan θi)
2 + κ2θ

(nθ + sin θi tan θi)
2 + κ2θ

]

(4.5b)

79

• This is the well known Snell-
Descartes laws. The derivation 
of this law is based on the 
Principle of Least Time.


• Ibn Sahl proposed first this law 
in 984.

n1 sin θ1 = n2 sin θ2

θ1 = θ2

Ibn Sahl, fl. 980 CE



Fresnel Formulæ - Dielectrics
• Discovered by Augustin-Jean Fresnel in 1823

• The amplitude of the reflected/refracted field is 

given by the Fresnel equations for the parallel (p) 
and perpendicular (s) to the plane of incidence.


• They can be obtained using the fact that the 
tangencial components of E and B has to be 
continuous across the surface
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4. MODELLING THE REFLECTION

where nθ and κθ are given by:

n2θ =
1

2

[
√

(

n2 − κ2 − sin2 θi
)2

+ 4n2κ2 +
(

n2 − κ2 − sin2 θi
)

]2

(4.6a)

κ2θ =
1

2

[
√

(

n2 − κ2 − sin2 θi
)2

+ 4n2κ2 −
(

n2 − κ2 + sin2 θi
)

]2

(4.6b)

where n and κ are the index of refraction and extinction coefficient of the secondmedium.
For the normal incidence nθ = n and κθ = κ.

The transmission coefficient, the fraction of light that is refracted to the newmedium,
is obtained using the relations:

Fs + Ts = 1 and Fp + Tp = 1 (4.7)

The equations 4.5a and 4.5b can be simplified when κ " 1 and in this case the reflection
and transmission coefficients are given by [149]

Fp =





n cos θi −
√

1− 1
n2

sin2 θi

n cos θi +
√

1− 1
n2

sin2 θi





2

(4.8a)

Fs =





cos θi − n
√

1− 1
n2

sin2 θi

cos θi + n
√

1− 1
n2

sin2 θi





2

(4.8b)

Tp =
sin 2θi sin 2θt

sin2 (θi + θt) cos2 (θi − θt)
(4.8c)

Ts =
sin 2θt cos 2θi
sin2 (θi + θt)

(4.8d)

For the normal incidence (θi = θt = 0 and κθ = κ, nθ = n), the distinction between
perpendicular and parallel equations disappears and we have

R =
(n− 1)2 + κ2

(n+ 1)2 + κ2
T =

4n

(n+ 1)2 + κ2
(4.9)

4.2 Models of the Surface Structure

The way the light is reflected in a rough surface is dependent of the microscopic
shape of the surface, the roughness. The origin of the roughness of a surface is diverse
and can have many causes. It includes random scratches surviving in the surface after
polishing, any irregularities in result of machine cut, etc...[150]. The roughness is usu-
ally an undesirable effect increasing the wear and friction of the material. Moreover, in
result of this roughness the light is scattered other than in the specular direction and in
general leads to a specular lobe. Thus it is necessary to describe or somehowmodel the
surface structure so to be able to describe the reflectance distribution in the surface.
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Fresnel Formulæ - Metals

• In metals, the extinction coefficient κ has to be 
taken also into account:


• For smooth (and homogeneous) surfaces - that’s 
all we need to know! 6

Research Article Journal of the Optical Society of America A 7

Fig. 3. Shadowing term Gi(qi; Pa) given by eq. (12) for
different slope distributions and roughness parameters.

F. The specular reflection
B31 When the light arrives at the interface, it can be re-
flected or refracted with a probability of reflection given
by the well known Fresnel Formulæ, F (q; n, k). These
equations are written separately for each polarization com-
ponents, perpendicular (s) and parallel (p) to the plane of
incidence and dependent of the optical constants of both
media. In their most general form they are given by [42]

Fs (q; n, k) =(nq − cos q)2 + k2
q(nq + cos q)2 + k2
q

, (14a)

Fp (q; n, k) =Fs

������
(nq − sin q tan q)2 + k2

q(nq + sin q tan q)2 + k2
q

������ , (14b)

where nq and kq are given by:

n2
q =1

2
�
�
�n2 − k2 − sin2 q�2 + 4n2k2 + �n2 − k2 − sin2 q��

2

,

k2
q =1

2
�
�
�n2 − k2 − sin2 q�2 + 4n2k2 − �n2 − k2 + sin2 q��

2

,

n =n2
n1

and k = k2
n1

; assumed k1 = 0.

B32 The angle q corresponds to the global angle of
incidence, qi, for coherent reflection (V < Qr), and to the
local angle of incidence, q′, otherwise (V > Qr).

B34 If the light is reflected coherently, the angle of re-
flection, qr (fig. 1), is equal to the angle of incidence and
the direction of reflection r relates with both i and n by

r = i − 2 (i ⋅ n)n = i + 2 cos qin. (15)

We call to this component specular spike. The simulation
stops here for these photons.

B35 For the scattering along the local normal n′ the
light is reflected according to the direction

r = i + 2 cos q′n′. (16)
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Fig. 4. Angular distribution of the specular lobe com-
ponent for qi=60○. The different curves represent the
slope distributions Pa implemented in the Monte Carlo
program for values of similar roughness.

In this particular case the angle of reflection, measured
relatively to the global normal n, is

cos qr = n ⋅ r = 2 cos q′ cos a − cos qi. (17)

We call to this component specular lobe. Unlike the spike,
these photons can be masked—intercepted by some part
of the surface—before leaving the surface. The masking is
being considered in the next section.

B36 The angular distribution of the specular lobe is
shown in the fig. 4 for the three distributions Pa imple-
mented in SOLARS with similar values of roughness
(eq. (10)).

G. The multiple-scattered photons
B37 The reflected photons can be intercepted by an ad-
jacent tip of the surface—masking—undergoing a sec-
ond scattering in the surface. The probability of photon
masking, Gr (qr), is calculated using the Smith model,
introduced before in section E. In the original model, it
is usually assumed symmetry between shadowing and
masking in which case Gr is obtained by replacing qi for
qr in the eq. (12). However, as observed by ref. [43], for
the points in the surface that are more elevated, both the
probability to be masked and shadowed decrease at the
same time. As a consequence, when sampling the local
normal, we preferably select points in the surface that are
more elevated, decreasing the value of Gr. Ref. [43] de-
rived the joint probability of shadowing-masking which
is being used here; it results in the following expression
for Gr when the contribution from the shadowing already
considered is removed

Gr (qr, qi; Pa) = 1
1+Gi (qi; Pa)L (qr; Pa) . (18)



Surface Roughness

• Most of the surfaces have some 
kind of roughness that needs to 
be taken into account.


• It can be described by z = h(x, y)
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Diffuse Reflection
• Dielectrics -  mate reflection - subsurface scattering in  

inhomogeneous materials, whose inhomogeneities serve as 
scatters centers in a otherwise uniform dielectric medium 
with index of refraction n.

• Produces a reflectance pattern that is weakly dependent 

on the angle of incidence;

• This process is similar to what happens in clouds


• Metals: multiple scatter that occurs in a rough surface (not 
that common).
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4. MODELLING THE REFLECTION
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Figure 4.2: The reflected and transmitted components in a interface between two differ-
ent media with indices of refraction n0 and n. The intensity of the transmitted compo-
nents is usually larger than the specular components. It is considered that no internal
reflection occurs in the transmitted medium.

reflectance distribution of a surface.
To describe light that is not reflected, but otherwise transmitted into the other side of

the interface it is also necessary to consider various contributions namely the specular
lobe and coherent spike. In this case the BTIDF (bidirectional transmitted intensity
distribution function) "t is given by

"t = "tS + "tC (4.2)

where "tS described the transmitted lobe and "tC the transmitted spike. It is assumed
that no multiple scattering occurs in the second medium, or else it should be necessary
to describe the scattering process that occurs inside the medium.

Figure 4.2 represents the scattering of an electromagnetic wave, considering both a
lobe and a spike for both the reflection and transmition processes. The angle θt corre-
sponds to the transmitted angle obtained using the Snell’s law.
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Refraction and Transmission
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Principles of Radiometry
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Principles of Radiometry

• Radiant Flux: the amount of electromagnetic energy (Q) or 
number of photons Nph received, transferred (transmitted) or 
emitted (reflected) by an object:


• Irradiance: 

• Radiance: the flux emitted along a certain                       
direction per unit of solid angle per unit of            
foreshortened area
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APPENDIXA

Principles of Radiometry

Radiometry is the measurement of the energy content of the electromagnetic radia-
tion field and how the energy Q is transferred from a source, through a medium, into a
detector. Thus, the radiometric measurements are usually expressed in unites of energy
but can be also given in number of photons (the later case is referred as actiometric).

These concepts are too well known and can be found in many specialized publica-
tions. They are introduced here for completeness purposes and to fix the notation and
the definition of relevant quantities. The definitions exposed here are based in [113]
and [114].

The Radiant Flux and Radiant Intensity

The radiant flux is defined as the amount of electromagnetic energy Q received,
transferred or emitted per unit of time by a given object,

Φ =
dQ

dt
[W] (A.1)

This quantity can also be expressed as the number of photons Nph per unit of time
that are emitted received or transverse a certain area,

Φ =
dNph

dt
[Nphs

−1] (A.2)

Usually we distinguish between incident flux Φi, emitted/reflected flux Φr and
transmitted flux, Φt, according as the radiation is received, emitted or transmitted.

The radiant intensity or photon flux intensity is defined as the ratio between the flux
emitted towards a specific direction per unit of solid angle dΩ,

I =
dΦr

dΩ
(A.3)

209

APPENDIXA

Principles of Radiometry

Radiometry is the measurement of the energy content of the electromagnetic radia-
tion field and how the energy Q is transferred from a source, through a medium, into a
detector. Thus, the radiometric measurements are usually expressed in unites of energy
but can be also given in number of photons (the later case is referred as actiometric).

These concepts are too well known and can be found in many specialized publica-
tions. They are introduced here for completeness purposes and to fix the notation and
the definition of relevant quantities. The definitions exposed here are based in [113]
and [114].

The Radiant Flux and Radiant Intensity

The radiant flux is defined as the amount of electromagnetic energy Q received,
transferred or emitted per unit of time by a given object,

Φ =
dQ

dt
[W] (A.1)

This quantity can also be expressed as the number of photons Nph per unit of time
that are emitted received or transverse a certain area,

Φ =
dNph

dt
[Nphs

−1] (A.2)

Usually we distinguish between incident flux Φi, emitted/reflected flux Φr and
transmitted flux, Φt, according as the radiation is received, emitted or transmitted.

The radiant intensity or photon flux intensity is defined as the ratio between the flux
emitted towards a specific direction per unit of solid angle dΩ,

I =
dΦr

dΩ
(A.3)

209

Φi → Incident Flux 
Φr → Emitted Flux 
Φt → Transmitted Flux

A. PRINCIPLES OF RADIOMETRY
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θq
dΩq

dΩr

Figure A.1: Definition of the angles and solid angles relevant to radiometry.

and is in general dependent of the angles θ and φ of the direction of the radiation.

The Irradiance and Radiance of a Surface

All incident and reflected directions associated to a particular scattering point, S,
are inside a hemi-sphere with an origin at S.

Two different light sources that produce the same illuminated area in this hemi-
sphere will produce the same illuminated area in the surface. Specifically a big source
viewed at a grazing anglewill produce the same result as a small source viewed frontally.
Thus it will be the foreshortening area Af = Asource · cos θq (figure A.1) that needs to
be considered. cos θq is the angle between the direction of the photons and the vector
defined between the source and the scattered point. Similarly a detector placed at a low
grazing angles probe larger area of the radiating surface in comparison to the same de-
tector if facing the surface from above at the perpendicular to the surface. The effective
radiating area is A cos θr (see figure A.1). Both the irradiance and radiance use of this
concept of foreshortening area.

The irradiance measures the incident flux of radiation per unit of irradiated area,
dA ,

E =
dΦi

dA
(A.4)

and decreases with increasing the angle of incidence.
The radiance at a given point is defined as the flux emitted along a certain direction

per unit of solid angle per unit of foreshortened area:

L =
d2Φr

dA cos θrdΩr
(A.5)
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Principles of Radiometry - Reflectance

• BSSRDF: the most generic description of the 
reflectance of a surface is given by the bidirectional 
scattering-surface reflectance function. It is 
dependent of 8 variables, they are:


• BRDF (Bidirectional reflected distribution function): it 
is defined as the ratio between the differential 
radiance and the irradiance of the surface:

12

A. PRINCIPLES OF RADIOMETRY

The Bidirectional Reflectance

Let the incident beam comes from the direction (θi, φi)within a solid angle dΩi. The
portion of the flux which strikes the element of area dAi centred at (xi, yi) is given by
dΦi. The reflected radiance towards the direction (θi, φr) at the point (xr, yr) should be
proportional to

dL = S (θi, φi, xi, yi, θr, φr, xr, yr)dΦi (A.9)

where S is a scattering function known as the bidirectional scattering-surface reflectance
function BSSRDF. This is a function of the middle point of the incident flux, (xi,yi), the
point from where the reflected flux emerges (xr,yr) and the directions of incidence and
reflectance. These two points can be different due effects such as sub-surface scattering
and multi-scattering.

This is a generic function dependent of 8 parameters and is in general of no practical
use. However it can be assumed that the surface element is uniformly irradiated and
the radiance is only dependent of the incident direction, in which case the incident flux
is

dΦi = Li cos θidΩidAi [W] (A.10)

Moreover, in general the scattering properties of the sample are uniform and isotropic
across the reference plane, so that the scattering function does not depend on the loca-
tion of the point (xr, yr), but it still depends on the distance between (xi, yi) and (xr, yr).
In such a case the radiance is written as

dLr = #r (θi, φi, θr, φr)
dΦi

dAi
[Wm−2sr−1] (A.11)

The function #r (θi, φi; θr, φr) is called the bidirectional reflected distribution function
(BRDF). This function is in fact the ratio between the differential radiance and the irra-
diance of the surface,

#r (θi, φi, θr , φr) =
dLr (θi, φi, θr, φr)
Li (θi, φi) cos θidΩi

(A.12)

In a similar way it is possible to define the bidirectional transmission-distribution
function defined by:

#t (θi, φi, θt, φt) =
dLt (θi, φi, θt, φt)
Li (θi, φi) cos θidΩi

(A.13)

These functions, #r and #r, cannot be measured precisely since the solid angles involved
are infinitesimal.

In case the reflecting surface is viewed by the detector from a great distance, then
it appears for all practical purposes as it was a point source. Then the radiance can be
replaced by the intensity, I =

∫

Lr cos θrdAr.
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Reflection Geometries

13

The BRDF, the bidirectional reflected-radiance-distribution function BRIDF is
defined as ratio of the radiant intensity Ir in a direction (θr, φr) to the incident flux Φi.

# (θi, φi, θr, φr) =
dIr (θi, φi, θr, φr)

dΦi (θi, φi)
(A.14)

When the element of area dAi is small enough so that the radiance Lr can be con-
sidered constant in dAr, the functions BRIDF and BRDF are related by the relation

#rl (θi, φi, θr, φr) = #r (θi, φi, θr, φr) cos θr (A.15)

In either case the bidirectional reflectance functions relate the incoming and outcoming
directions.

Reflectance Geometry Definitions

The bidirectional reflectance is a conceptual quantity and cannot be measured di-
rectly due the fact that it corresponds to infinitesimal solid angles. In real life the solid
angles can be made small, but are still finite. Real experiments involve radiation that
goes some specific solid angle. Hence, this as to be taken into account when measuring
this reflectance functions.

BIDIRECTIONAL

BI-CONICAL

DIRECTIONAL-HEMISPHERICAL

BI-HEMISPHERICAL

Figure A.3: Definition of the reflectances that are used through out the text. Actually
only the bi-hemispherical and bi-conical reflectances can be measured, the directional
reflectances are conceptual only (adapted from [246]).

The reflectance R is defined as the ratio between the reflectance flux and the incident
flux,

R (Ωi,Ωr,Φi) =
Φr

Φi
(A.16)
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A. PRINCIPLES OF RADIOMETRY

However, a more correct expression usually requires the definition of the beam geom-
etry. We are interested in specifically three different geometries; i) directional-conical re-
flectance, ii) directional-hemispherical reflectance and ii) the bi-hemispherical reflectance
(see figure A.3). All of these reflectances can be measured directly or obtained from the
BRIDF when it is known.

The directional-conical reflectance applies to a reflected solid angles that is far from
infinitesimal. The direction of the incident light is supposed to be unidirectional and
the reflected light is assumed to be within the cone Ωr. This factor is obtained from the
BRIDF integrating over Ωr,

!DC (θi, φi;Ωr) =
∫

Ωr

! (θi, φi, θr, φr)dΩr (A.17)

where ! corresponds to the bidirectional reflectance function.
The directional-hemispherical reflectance is characterized for a surface which re-

ceives incident radiation that comes from an incident direction (θi, φi). The reflected
flux is measured in hemisphere of all possible viewing directions. Thus, it is given by
the integral of BRIDF for all the viewing directions,

RDH (θi, φi; 2π) =
∫

2π
! (θi, φi, θr, φr) dΩr (A.18)

This function can also be called black-sky albedo.
The bi-hemispherical reflectance is by definition the ratio between the reflected

flux and the incident flux, both measured over the whole hemisphere above the surface
(see fig. A.3). For the BHRF is necessary to specify the specific illumination condi-
tions. When the surface is illuminated under diffuse light, thus the incident photons
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This function is also called the white-sky albedo.
However under normal ambient conditions there is also a directional component

which can be introduced in the above integral, this is called the blue-sky albedo.
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A. PRINCIPLES OF RADIOMETRY

However, a more correct expression usually requires the definition of the beam geom-
etry. We are interested in specifically three different geometries; i) directional-conical re-
flectance, ii) directional-hemispherical reflectance and ii) the bi-hemispherical reflectance
(see figure A.3). All of these reflectances can be measured directly or obtained from the
BRIDF when it is known.

The directional-conical reflectance applies to a reflected solid angles that is far from
infinitesimal. The direction of the incident light is supposed to be unidirectional and
the reflected light is assumed to be within the cone Ωr. This factor is obtained from the
BRIDF integrating over Ωr,
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! (θi, φi, θr, φr)dΩr (A.17)
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What we mean by Reflection

14

The BRDF, the bidirectional reflected-radiance-distribution function BRIDF is
defined as ratio of the radiant intensity Ir in a direction (θr, φr) to the incident flux Φi.

# (θi, φi, θr, φr) =
dIr (θi, φi, θr, φr)

dΦi (θi, φi)
(A.14)

When the element of area dAi is small enough so that the radiance Lr can be con-
sidered constant in dAr, the functions BRIDF and BRDF are related by the relation

#rl (θi, φi, θr, φr) = #r (θi, φi, θr, φr) cos θr (A.15)

In either case the bidirectional reflectance functions relate the incoming and outcoming
directions.

Reflectance Geometry Definitions

The bidirectional reflectance is a conceptual quantity and cannot be measured di-
rectly due the fact that it corresponds to infinitesimal solid angles. In real life the solid
angles can be made small, but are still finite. Real experiments involve radiation that
goes some specific solid angle. Hence, this as to be taken into account when measuring
this reflectance functions.

BIDIRECTIONAL

BI-CONICAL

DIRECTIONAL-HEMISPHERICAL

BI-HEMISPHERICAL

Figure A.3: Definition of the reflectances that are used through out the text. Actually
only the bi-hemispherical and bi-conical reflectances can be measured, the directional
reflectances are conceptual only (adapted from [246]).

The reflectance R is defined as the ratio between the reflectance flux and the incident
flux,

R (Ωi,Ωr,Φi) =
Φr

Φi
(A.16)
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How can we measure it?

• Goniometer - Directional/Directional (more conical/
conical)

2.4 The positioning of the Sample and of the Photomultiplier

2.4 The positioning of the Sample and of the Photomultiplier

The beam light impinges the sample with a certain angle of incidence, which hope-
fully can be changed automatically during the experimental procedure. To accomplish
this objective the sample is mounted in a movable structure adapted from a CD player
(figure 2.11). Attached to the structure there is a geared stepper motor with 8000 steps
per revolution which corresponds to 0.045◦ per step. A drive-shaft transmits the move-
ment to a tooth wheel system which is able to rotate the structure that supports the
sample (figure 2.11). The position of the structure is bounded by two stop sensors,
when the structure arrives to such position a motion sensor stops the movement. The
positions of the stop sensors are such that it is possible to measure angles of incidence
from 0◦ to 90◦.

The steppermotor from the CD player is used to lift and lower the sample. Thus the
collimated light can pass through the structure or otherwise be reflected by the sample.
This vertical movement is also controlled by motion sensors.

The sample is supported by three screws for fine tuning of the surface inclination.
With these screws it is possible to change the angle of inclination of the sample, ψ, rel-
ative to the plane of movement. This structure has been carefully designed to avoid
having any material behind the sample, as this might disturb the measurement of par-
tial or totally transparent materials (e.g. quartz).

The VUV photons are detected by a photomultiplier (PMT) mounted on a moving
stem that can be rotated horizontally around the axis of the sample (see fig. 2.11). The
stem is 235 mm long and is attached to the breadboard with a ball bearing. The stem
was machined in aluminum to reduce its weight though ensuring its strength. The

ds
PMT

Ωi

Ωr

n

nc νr

νi
ψ

Figure 2.11: Schematics of the positioning of the sample and PMT.
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• Total Integrating Sphere - Directional (more 
conical)/hemispherical reflectance



The Specular Reflection



Local Variables

• In rough surfaces, it is useful to define local variables:

17

n n'i

r

ϕr

θi

θ'
θr

θ'

α

t
θt

θt'

Global Variables

θ
′
= θ

′

i
= θ

′

r

Local Variables
n n

′

θi θr θt

cosα = n · n
′



Light Reflection in a Rough Surface - The Physical Model
Let's assume that an incident plane wave arrives to a 
rough surface. Each point of the rough surface will 
originate a spherical plane wave that will interfere between 
each other. To get the scattered field, we use the following 
approximations:

• Fraunhofer diffraction limit - the light is observed at great 

distance from the surface.

• Kirchhoff approximation (tangent plane approximation) 

each point of the surface has the same optical properties 
of its tangent plan defined by the local normal n’ 

• Small slopes approximation - the local normal n’ is not 
far from the global normal.


With this, the scattering field is given by:

18

4. MODELLING THE REFLECTION

Incident Wave
Reflected Wave

Transmitted Wave

r′

r

r

ki kr h+
h−

P

B

Y

θi
θr

z = h (x, y) mean plane z = 0

z

(x, y)

V0

V1

θt

kt

Medium n0

Medium n

r− r′

Figure 4.9: System of coordinates used to derive the intensity of the scattered waves
(transmitted and reflected).

Given that the spherical light is measured at a great distance from the surface (in com-
parisonwith λ) thus the far field approximation (k0r # 1), or the Fraunhofer diffraction
limit, is valid and the following approximation holds [172]

exp (ik0|r− r′|)
|r− r′| $

exp
(

ik0
√
r2 + r′2 − 2r · r′

)

r
$ exp (ik0r− ikr · r′)

r
(4.33)

the derivative of the Green function is given by:

∂G (r, r′)
∂n′ = n′ ·∇G

(

r, r′
)

= −in′ · kr
exp (ik0r− ikr · r′)

r
(4.34)

thus we have for the scattered electric field,

Escat =
exp (ik0r)

4πr

∫

S′
dS′

{[

ikr
∂r′

∂n′

]

E
(

r′
)

+ i
∂E (r′)

∂n′

}

exp
(

−ikr · r′
)

(4.35)

where r is the magnitude of the vector r.

The Kirchhoff approximation

The integral in eq. 4.35 cannot be solved analytically in most cases due the com-
plexity of the function h (x, y). It is however possible to solve this integral numerically
[158, 173], these methods provide rigorous solution. However these methods are com-
putationally expensive in time and memory and more practical approximations to the
integral are usually performed. One solution is to use a perturbation approach [174].
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Vector position in the surface
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• The tangent plane approximation: it is also known as Kirchhoff approximation. It assumes that each point of the surface has the
same optical properties of its tangent plan defined by a local normal n′ [? ]. This requires the radius of curvature of each point
of the surface to be much larger than the wavelength of the light, i.e. the surface needs to be locally flat. Thus, the scattered
field is given by the sum of the reflected field originating at each local plane as given by the Fresnel equations, R (n1, n2).

• Far field approximation – the Fraunhofer regime; the field is obtained at great distance from the surface [? ].

• Small slope approximation: the local normal n′ is not far from the global normal n [? ].

• The incident and scattered electric fields are represented by scalars, therefore effects such as the polarization of the are not
considered.

Using the above approximations and assuming that each point of the illuminate area A contributes to the reflected field, the field
reflected by the incoming ψinc at a point of the space defined by the vector r is given by (a detailed derivation of this integral can be
found in [? ]) 1

ψ (r) =
iψ0k0 exp (ik0r)

4πr
×

× [(1 − R) i + (1 + R) r] · n′
∫

A
exp (iψ · u)dA

(16)

where, R = ψ/ψ0, ψ = k0 (i − r) corresponds of the vector wave change, u the position vector of the illuminated surface A, u =
xî + yĵ + zk̂ and r the amplitude of r. This equation can be slightly simplified if we use the local coordinates defined in the figure 1.
In this case we have CS – It is clear to me that we can write this in this form, although I couldn’t find it in any
other place.

[(1 − R) i + (1 + R) r] · n′ = 2R cos θ′ NEW (17)

which results in

ψ (r) =
iψ0k0 exp (ik0r)

2πr
R cos θ′

∫

A
exp (ik · u)dA (18)

We assume that the irregularities of the surface are distributed randomly, causing both the electric field and intensity to fluctu-
ate. Therefore, the quantity that we are interested corresponds the average intensity of the field 〈ψψ∗〉 CS – Need to check if the
thing that we have inside the integral is actually correct. The factor of A2 is probably missing - it is present
in Nayar-1991 [? ].

〈ψψ∗〉 =
ψ2

0k2
0 cos2 θ′

4π2r2

∫

A

∫

A′
exp{i[kx

(
x − x′

)
+

ky
(
y − y′

)
]} ·
〈
exp

{
ikz
[
h (x, y)− h

(
x′, y′

)]}〉
dAdA′

(19)

The reflectance is usually described using the BRDF function , fr (equation 1). The average field intensity us related with the BRDF
through the following relation (see [? ]) CS – This is most probably Wrong 2

fr =
r2 〈ψψ∗〉

Aψ2
0 cos θi cos θr

(20)

3

1The derivation of this equation is on my thesis eq. 4.40 and also on Ogilvy 1987 eq. 6.7
2 Review this - not sure about this step.

I had the following relation before

fr =
r2 〈ψψ∗〉
ψ2

0 cos θi

Found this on "A Review of Models for Scattering from Rough Surfaces" from Patrik Hermansson et al.
- The biscatic scattering coefficient σ0 is related with the scattered field by

σ0 = 4πr2 〈ψψ∗〉
Aψ2

and the biscatic scattering coefficient is related with the BRDF fr by

fr =
σ0

4π cos θr cos θi

which results in the following expression obtained here
Sheppard [? ] has the following relation between the BRDF and the scattering coefficient

〈ρρ∗〉 = cos2 θi
A2

λ2r2

3I need to define the constant A

Vector wave change
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Light Reflection in a Rough Surface


• We assume that the irregularities of the surface are 
distributed randomly, causing both the electric field and 
intensity to fluctuate - average intensity of the field  


• We can define a joint characteristic function that depends 
on the joint distribution of the roughness of the surface p2


• Gaussian joint probability function written as function of a 
correlation function:


• For the gaussian joint probability function, the characteristic 
function is given by:

19
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In the reflection measurement the light is measured at a great distance from the source thus the far field approximation (k0r ! 1), the
Fraunhoffer diffraction limit, is valid and the following approximation holds [? ]

exp (ik0|r − r′|)
|r − r′| $

exp
(

ik0
√

r2 + r′2 − 2r · r′
)

r
$ exp (ik0r′ − ikr · r′)

r
(13)

the derivative of the Green function is given by:

∂G (r, r′)
∂n′ = n′ ·∇G

(
r, r′
)
= −in′ · kr

exp (ik0r′ − ikr · r′)
r

(14)

thus we have for the scattered electric field,

ψscat =
ψ0

4πr

∫

S′
dS′

{[
iψr

∂r′

∂n′

]
ψ
(
r′
)
+ i

∂ψ (r′)
∂n′

}
exp (−ikr · r) (15)

where ψ0 = exp (ik0r) and r the intensity of the vector r.
According to the Huygens-Fresnel principle each point of the surface will be a new center of a secondary disturbance generating

a spherical wave that will interfere with each other. The reflected field ψ (r) at a point r of the surface is given by the integration of
these disturbances generated by each point of the illuminated area A and resulting in a Kirchhoff integral [26]. In most of the cases
the reflected field ψ cannot be solved analytically due the complexity of the function h (x, y). Instead, some approximations are used
to obtain an analytic expression for the reflected wave; the most common and that will be considered here are:

• The tangent plane approximation: it is also known as Kirchhoff approximation. It assumes that each point of the surface has the
same optical properties of its tangent plan defined by a local normal n′ [15]. This requires the radius of curvature of each point
of the surface to be much larger than the wavelength of the light, i.e. the surface needs to be locally flat. Thus, the scattered
field is given by the sum of the reflected field originating at each local plane as given by the Fresnel equations, R (n1, n2).

• Far field approximation – the Fraunhofer regime; the field is obtained at great distance from the surface [26].

• Small slope approximation: the local normal n′ is not far from the global normal n [28].

• The incident and scattered electric fields are represented by scalars, therefore effects such as the polarization of the are not
considered.

Using the above approximations and assuming that each point of the illuminate area A contributes to the reflected field, the field
reflected by the incoming ψinc at a point of the space defined by the vector r is given by (a detailed derivation of this integral can be
found in [29]) 1

ψ (r) =
iψ0k0 exp (ik0r)

4πr
×

× [(1 − R) i + (1 + R) r] · n′
∫

A
exp (iψ · u)dA

(16)

where, R = ψ/ψ0, ψ = k0 (i − r) corresponds of the vector wave change, u the position vector of the illuminated surface A, u =
xî + yĵ + zk̂ and r the amplitude of r. This equation can be slightly simplified if we use the local coordinates defined in the figure 1.
In this case we have CS – It is clear to me that we can write this in this form, although I couldn’t find it in any
other place.

[(1 − R) i + (1 + R) r] · n′ = 2R cos θ′ NEW (17)
which results in

ψ (r) =
iψ0k0 exp (ik0r)

2πr
R cos θ′

∫

A
exp (iψ · u)dA (18)

We assume that the irregularities of the surface are distributed randomly, causing both the electric field and intensity to fluctu-
ate. Therefore, the quantity that we are interested corresponds the average intensity of the field 〈ψψ∗〉 CS – Need to check if the
thing that we have inside the integral is actually correct. The factor of A2 is probably missing - it is present
in Nayar-1991 [30].

〈ψψ∗〉 =
ψ2

0k2
0 cos2 θ′

4π2r2

∫

A

∫

A′
exp{i[kx

(
x − x′

)
+

ky
(
y − y′

)
]} ·
〈
exp

{
ikz
[
h (x, y)− h

(
x′, y′

)]}〉
dAdA′

(19)

The reflectance is usually described using the BRDF function , fr (equation 1). The average field intensity us related with the BRDF
through the following relation (see [31]) CS – This is most probably Wrong 2

fr =
r2 〈ψψ∗〉

Aψ2
0 cos θi cos θr

(20)

1The derivation of this equation is on my thesis eq. 4.40 and also on Ogilvy 1987 eq. 6.7
2 Review this - not sure about this step.
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In equation 19 the function 〈exp {ik0kz [h (x, y)− h′ (x, y)]}〉 corresponds to the joint characteristic function or bivariate character-
istic function defined4 as [? ]

χ2 =
〈
exp

{
ikz
[
h (x, y)− h

(
x′, y′

)]}〉

=
∫ +∞

−∞

∫ +∞

−∞
p2
(
z, z′

)
dzdz′

where p2 (z, z′) corresponds to the joint (bivariate) probability distribution. It gives the probability that a point (x, y) is in a specified
region D in the (x, y) plane. χ2 has usually all the information sufficient to characterize the roughness of the surface. This is easy to
understand because the surface is a two dimensional, therefore it should be described by a two dimensional probability distribution.
For the majority of the surfaces the roughness is isotropic, this means that if we measure the roughness function χ2 along any random
direction p co-planar with the surface, we will obtain the same result. In this case the characteristic function χ2 can be written as

function of the distance τ between the points with height z and z′, τ =
√
(x − x′)2 + (y − y′)2. Using such approximation the integral

19 is converted to spherical coordinates resulting in

fr = S ×
∫ ∞

0
χ2 (τ) J0 (kzτ) τdτ (21)

where J0 corresponds to a spherical Bessel function of first order.
Let us define the following constant

S =
R2 cos2 θ′

cos θiλ2 (22)

Now we need to assume a certain distribution for the bivariate distribution P2. The most common assumption corresponds to the
Gaussian joint probability distribution written as function of a correlation function C (τ, T) [33]

P2
(
z, z′

)
=

1√
2π [1 − C (τ, T)]σh

×

× exp

[
− z2 + z′2 − 2C (τ, T) zz′

2σ2
h [1 − C (τ, T)]

] (23)

Not all surfaces are well characterized using this distribution, thus we should also consider a joint Cauchy height distribution

P2
(
z, z′

)
=

γ

π
√

1 − C (τ, T)

[
z2 + z′2 + γ2

1 − C (τ, T)

]− 3
2

(24)

and a joint Laplace distribution

P2
(
z, z′

)
=

1√
2σh
√

1 − C (τ, T)
exp

[
−

√
2 (|z|+ |z′|)

σh
√

1 − C (τ, T)

]
(25)

The computation of the joint characteristic function for a Gaussian height distribution results in

χ2 = exp
[
−k2

zσ2
h (1 − C (τ, T))

]

= χ1χ∗
1 exp

[
k2

zσ2
h C (τ, T)

]

I had the following relation before

fr =
r2 〈ψψ∗〉
ψ2

0 cos θi

Found this on "A Review of Models for Scattering from Rough Surfaces" from Patrik Hermansson et al.
- The biscatic scattering coefficient σ0 is related with the scattered field by

σ0 = 4πr2 〈ψψ∗〉
Aψ2

and the biscatic scattering coefficient is related with the BRDF fr by

fr =
σ0

4π cos θr cos θi

which results in the following expression obtained here
Sheppard [32] has the following relation between the BRDF and the scattering coefficient

〈ρρ∗〉 = cos2 θi
A2

λ2r2

3I need to define the constant A
4Beckmann has the exponential inside the integral which is not here
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p2
(
z, z′

)
dzdz′

where p2 (z, z′) corresponds to the joint (bivariate) probability distribution. It gives the probability that a point (x, y) is in a specified
region D in the (x, y) plane. χ2 has usually all the information sufficient to characterize the roughness of the surface. This is easy to
understand because the surface is a two dimensional, therefore it should be described by a two dimensional probability distribution.
For the majority of the surfaces the roughness is isotropic, this means that if we measure the roughness function χ2 along any random
direction p co-planar with the surface, we will obtain the same result. In this case the characteristic function χ2 can be written as

function of the distance τ between the points with height z and z′, τ =
√
(x − x′)2 + (y − y′)2. Using such approximation the integral

19 is converted to spherical coordinates resulting in

fr = S ×
∫ ∞

0
χ2 (τ) J0 (kzτ) τdτ (21)

where J0 corresponds to a spherical Bessel function of first order.
Let us define the following constant

S =
R2 cos2 θ′

cos θiλ2 (22)

Now we need to assume a certain distribution for the bivariate distribution P2. The most common assumption corresponds to the
Gaussian joint probability distribution written as function of a correlation function C (τ, T) [? ]

P2
(
z, z′

)
=

1√
2π [1 − C (τ, T)]σh

×

× exp

[
− z2 + z′2 − 2C (τ, T) zz′

2σ2
h [1 − C (τ, T)]

] (23)

Not all surfaces are well characterized using this distribution, thus we should also consider a joint Cauchy height distribution

P2
(
z, z′

)
=

γ

π
√

1 − C (τ, T)

[
z2 + z′2 + γ2

1 − C (τ, T)

]− 3
2

(24)

and a joint Laplace distribution

P2
(
z, z′

)
=

1√
2σh
√

1 − C (τ, T)
exp

[
−

√
2 (|z|+ |z′|)

σh
√

1 − C (τ, T)

]
(25)

The computation of the joint characteristic function for a Gaussian height distribution results in

χ2 = exp
[
−k2

zσ2
h (1 − C (τ, T))

]

= χ1χ∗
1 exp

[
k2

zσ2
h C (τ, T)

]

where χ1χ∗
1 corresponds to the characteristic function of the univariate distribution of height Pz (z) determined by the probability

distribution function
χ1χ∗

1 =
∫ +∞

0
Pz (z) exp (ikzz) (26)

which is χ1χ∗
1 = exp

(
−k2

zσ2
h
)

for the gaussian distibution. For a Cauchy joint probability height distribution we have

χ2 = exp
[
−kzσh

√
1 − C (τ, T)

]
(27)

CS – I cannot write this in the same form of the other equations. and a Laplace distribution

χ2 =

{
1 +

k2
zσ2

h [1 − C (τ, T)]
2

}−2

= χ1χ∗
1

[
1 −

k2
zσ2

h
2 + k2

zσ2
h

C (τ, T)

]−2
(28)

4Beckmann has the exponential inside the integral which is not here

• τ corresponds to the distance of the 
two points in the (x, y) plane
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In equation 19 the function 〈exp {ik0kz [h (x, y)− h′ (x, y)]}〉 corresponds to the joint characteristic function or bivariate character-
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χ2 =
〈
exp

{
ikz
[
h (x, y)− h

(
x′, y′

)]}〉

=
∫ +∞

−∞

∫ +∞

−∞
p2
(
z, z′

)
exp

[
ikz
(
z − z′

)]
dzdz′

where p2 (z, z′) corresponds to the joint (bivariate) probability distribution. It gives the probability that a point (x, y) is in a specified
region D in the (x, y) plane. χ2 has usually all the information sufficient to characterize the roughness of the surface. This is easy to
understand because the surface is a two dimensional, therefore it should be described by a two dimensional probability distribution.
For the majority of the surfaces the roughness is isotropic, this means that if we measure the roughness function χ2 along any random
direction p co-planar with the surface, we will obtain the same result. In this case the characteristic function χ2 can be written as

function of the distance τ between the points with height z and z′, τ =
√
(x − x′)2 + (y − y′)2. Using such approximation the integral

19 is converted to spherical coordinates resulting in

fr = S ×
∫ ∞

0
χ2 (τ) J0 (kzτ) τdτ (21)

where J0 corresponds to a spherical Bessel function of first order.
Let us define the following constant

S =
R2 cos2 θ′

cos θiλ2 (22)

Now we need to assume a certain distribution for the bivariate distribution P2. The most common assumption corresponds to the
Gaussian joint probability distribution written as function of a correlation function C (τ, T) [33]

P2
(
z, z′

)
=

1√
2π [1 − C (τ, T)]σh

×

× exp

[
− z2 + z′2 − 2C (τ, T) zz′

2σ2
h [1 − C (τ, T)]

] (23)

Not all surfaces are well characterized using this distribution, thus we should also consider a joint Cauchy height distribution

P2
(
z, z′

)
=

γ

π
√

1 − C (τ, T)

[
z2 + z′2 + γ2

1 − C (τ, T)

]− 3
2

(24)

and a joint Laplace distribution

P2
(
z, z′

)
=

1√
2σh
√

1 − C (τ, T)
exp

[
−

√
2 (|z|+ |z′|)

σh
√

1 − C (τ, T)

]
(25)

The computation of the joint characteristic function for a Gaussian height distribution results in

χ2 = exp
[
−k2

zσ2
h (1 − C (τ, T))

]

= χ1χ∗
1 exp

[
k2

zσ2
h C (τ, T)

]

I had the following relation before

fr =
r2 〈ψψ∗〉
ψ2

0 cos θi

Found this on "A Review of Models for Scattering from Rough Surfaces" from Patrik Hermansson et al.
- The biscatic scattering coefficient σ0 is related with the scattered field by

σ0 = 4πr2 〈ψψ∗〉
Aψ2

and the biscatic scattering coefficient is related with the BRDF fr by

fr =
σ0

4π cos θr cos θi

which results in the following expression obtained here
Sheppard [32] has the following relation between the BRDF and the scattering coefficient

〈ρρ∗〉 = cos2 θi
A2

λ2r2

3I need to define the constant A
4Beckmann has the exponential inside the integral which is not here - Now it is I changed it in 2023

C (τ ) =
1

σ2h
〈h(x1, y1) · h(x2, y2)〉



Light Reflection in a Rough Surface - The Physical Model
• Now, to get this integral we change this to cylindrical 

coordinates, expand it in a Taylor series to get something like (for 
the Gaussian bivariate function):


• And, if we make the assumption that the Correlation 
function is Gaussian, we have: 

• Where g corresponds to the optical roughness 
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where χ1χ∗
1 corresponds to the characteristic function of the univariate distribution of height Pz (z) determined by the probability

distribution function
χ1χ∗

1 =
∫ +∞

0
Pz (z) exp (ikzz) (26)

which is χ1χ∗
1 = exp

(
−k2

zσ2
h
)

for the gaussian distibution. For a Cauchy joint probability height distribution we have

χ2 = exp
[
−kzσh

√
1 − C (τ, T)

]
(27)

CS – I cannot write this in the same form of the other equations. and a Laplace distribution

χ2 =

{
1 +

k2
zσ2

h [1 − C (τ, T)]
2

}−2

= χ1χ∗
1

[
1 −

k2
zσ2

h
2 + k2

zσ2
h

C (τ, T)

]−2
(28)

where χ1 corresponds to the characteristic function of one variable of the Cauchy and Gaussian functions, respectively.
When the function χ2 is introduced in the integral 4 we observe that only the correlation function C (τ, T) is dependent of the

integrable variable τ. This integral can be solved by an expansion in a Taylor series resulting in a summation of integrals for a
bivariate gaussian distribution CS – Qual é o ponto de aplicação desta aproximação?

fr = Sχ1χ∗
1

{∫ +∞

0
J0 (kzτ) τdτ

+
+∞

∑
n=1

(kzσh)
2n

n!

∫ +∞

0
[C (τ, T)]n J0 (kzτ) τdτ

} (29)

and for the bivariate Laplace distribution

fr =Sχ1χ∗
1

{∫ +∞

0
J0 (kzτ) τdτ

+
+∞

∑
n=1

n (kzσh)
2n

(
2 + k2

zσ2
h
)n

∫ +∞

0
[C (τ, T)]n J0 (kzr) τdτ

} (30)

The first element of the exponential expansion is independent on τ. It can be directly computed

χ1χ∗
1

∫ ∞

0
J0 (kzτ) τdτ = χ1χ∗

1 (31)

This component component is only visible in the specular direction and can be identified with the quantity 〈ψ〉 〈ψ∗〉, the intensity
of the average field. It gives rise what is usually known as the specular spike. The intensity of this component is controled by the
characteristic function χ1χ∗

1. When k2
zσ2

h %1 this component the surface can be considered perfectly smooth. The other elements will
be part of the average intensity of the fluctuating field which is usually called specular lobe. To describe this term is necessary a closed
form for the correlation function C (τ, T). This function is usually assumed to follow or a gaussian or an exponential distribution. In
both cases this integral has an analytic form.

When the correlation function is exponential C (τ, T) = exp (−nτ/T) we have an integral of Lipschitz [34]
∫ ∞

0
exp (−nτ/T) J0 (kzr) τdτ =

nT2

(
n2 + k2

xyT2
)3/2 (32)

with k2
xy = k2

x + k2
y

When the correlation function follows a gaussian distribution C (τ, T) = exp
(
−nτ2/T2) we have an integral of Weber [34]

∫ ∞

0
exp

(
−nτ2/T2

)
J0 (kzr) rdr =

T2

2n
exp

(
−

k2
xyT2

4n

)
(33)

resulting in the following BRIDF function for gaussian height distribution and correlation function

fr = exp
(
−k2

zσ2
h

) [
δ (kz)

+ T2
∞

∑
n=1

k2n
z σ2n

h
n!

1
2n

exp

(
−

k2
xyT2

4n

)] (34)
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• The tangent plane approximation: it is also known as Kirchhoff approximation. It assumes that each point of the surface has the
same optical properties of its tangent plan defined by a local normal n′ [? ]. This requires the radius of curvature of each point
of the surface to be much larger than the wavelength of the light, i.e. the surface needs to be locally flat. Thus, the scattered
field is given by the sum of the reflected field originating at each local plane as given by the Fresnel equations, R (n1, n2).

• Far field approximation – the Fraunhofer regime; the field is obtained at great distance from the surface [? ].

• Small slope approximation: the local normal n′ is not far from the global normal n [? ].

• The incident and scattered electric fields are represented by scalars, therefore effects such as the polarization of the are not
considered.

Using the above approximations and assuming that each point of the illuminate area A contributes to the reflected field, the field
reflected by the incoming ψinc at a point of the space defined by the vector r is given by (a detailed derivation of this integral can be
found in [? ]) 1

ψ (r) =
iψ0k0 exp (ik0r)

4πr
×

× [(1 − R) i + (1 + R) r] · n′
∫

A
exp (iψ · u)dA

(16)

where, R = ψ/ψ0, ψ = k0 (i − r) corresponds of the vector wave change, u the position vector of the illuminated surface A, u =
xî + yĵ + zk̂ and r the amplitude of r. This equation can be slightly simplified if we use the local coordinates defined in the figure 1.
In this case we have CS – It is clear to me that we can write this in this form, although I couldn’t find it in any
other place.

[(1 − R) i + (1 + R) r] · n′ = 2R cos θ′ NEW (17)

which results in

ψ (r) =
iψ0k0 exp (ik0r)

2πr
R cos θ′

∫

A
exp (ik · u)dA (18)

We assume that the irregularities of the surface are distributed randomly, causing both the electric field and intensity to fluctu-
ate. Therefore, the quantity that we are interested corresponds the average intensity of the field 〈ψψ∗〉 CS – Need to check if the
thing that we have inside the integral is actually correct. The factor of A2 is probably missing - it is present
in Nayar-1991 [? ].

〈ψψ∗〉 =
ψ2

0k2
0 cos2 θ′

4π2r2

∫

A

∫

A′
exp{i[kx

(
x − x′

)
+

ky
(
y − y′

)
]} ·
〈
exp

{
ikz
[
h (x, y)− h

(
x′, y′

)]}〉
dAdA′

(19)

The reflectance is usually described using the BRDF function , fr (equation 1). The average field intensity us related with the BRDF
through the following relation (see [? ]) CS – This is most probably Wrong 2

fr =
r2 〈ψψ∗〉

Aψ2
0 cos θi cos θr

(20)

3

1The derivation of this equation is on my thesis eq. 4.40 and also on Ogilvy 1987 eq. 6.7
2 Review this - not sure about this step.

I had the following relation before

fr =
r2 〈ψψ∗〉
ψ2

0 cos θi

Found this on "A Review of Models for Scattering from Rough Surfaces" from Patrik Hermansson et al.
- The biscatic scattering coefficient σ0 is related with the scattered field by

σ0 = 4πr2 〈ψψ∗〉
Aψ2

and the biscatic scattering coefficient is related with the BRDF fr by

fr =
σ0

4π cos θr cos θi

which results in the following expression obtained here
Sheppard [? ] has the following relation between the BRDF and the scattering coefficient

〈ρρ∗〉 = cos2 θi
A2

λ2r2

3I need to define the constant A

with
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Can it also be given as function of θ′. It is given by

g = 4k2
0σ2

h cos2 θ′ cos2 α (38)

We can replace k2
xy Do not put here yet the definition of σα

k2
xy =

g
σ2

h
tan2 α (39)

which results in the following summation for the Gaussian height and correlation distribution CS – Oren Nayar [? ] has n
instead of 2n as I have here – CLEARIFY!

fr = e−g

[
δ (kz) + T2

∞

∑
n=1

gn

2nn!
exp

(
− g

2n
T2

2σ2
h

tan2 α

)]
(40)

6

For smooth surfaces (g # 1) only the first element in the series is significant. Therefore, equation 47 can be approximated to

fr = e−g

[
δ (kz) +

T2g
2

exp

(
− g

2
T2

2σ2
h

tan2 α

)]
(47)

ρ = exp
(
−4k2

0 cos2 θ′ cos2 ασ2
h

)
δ (kz) +

+
1
2

k2
zσ2

h T2 exp
[
−k2

0 cos2 θ′
(

σ2
h cos2 α + T2 sin2 α

)]

ρ = exp
(
−4k2

0 cos2 θ′ cos2 ασ2
h

)
δ (kz) +

k2
zσ2

h T2

2 + k2
zσ2

h T2 ×

× exp
[
−k2

0 cos2 θ′
(

σ2
h cos2 α + T2 sin2 α

)]

ρ = exp
(
−4k2

0 cos2 θ′ cos2 ασ2
h

)
δ (kz) +

+
k2

zσ2
h T2

2 + k2
zσ2

h T2 k2
zσ2

h T2
(

1 + ko cos2 θ′ sin2 α
) 3

2 ×

(48)

• As the wavelength of the incident light increases (k0 decreases) the intensity of the second term (the specular lobe) decreases as
expected. On the other hand the width of the specular increases proportionally with λ.

For very rough surfaces the correlation function can be expanded in a coefficient of power series

Gaussian: C (τ) =1 − r2

T2 (49)

mathcalExponential: C (τ) =1 − r
T

(50)

6 Let’s try o simplify this equation

fr = exp (−g)

[
δ (kz) + T2

∞

∑
n=1

gn

n!
1

2n
exp

(
− g tan2 α

σ2
α 4n

)]
(41)

Let’s try to match it with the Cook-Torrance equation

Pα (α) =
1

πm2 cos4 α
exp

(
− tan2 α

m2

)
, m2 =

4σ2
α

g
(42)

thus we have

fr = T2
∞

∑
n=1

gn

n!
1

2n
exp

(
− tan2 α

m2n

)
(43)

and we can write it in the following way

f Lobe
r =

∞

∑
n=1

wn Pα,n (α) (44)

with the weights being given by

wn =
+∞

∑
n=0

g
n!

(45)

I would like to write this in the following way

f Lobe
r = [1 − exp (−g)]

∞

∑
n=0

gn

n!
g

4πσ2
α n cos2 α

exp
(
− g tan2 α

σ2
α 4n

)
(46)

g =

[

σh
2π

λ
(cos θi + cos θr)

]2



Light Reflection in a Rough Surface - The Physical Model

• This corresponds to the well-known Beckmann-Spizzichino model 
• The surface looks smoother for:


• Larger angles of incidence or observation;

• Larger photon wavelengths;

• Larger values of roughness


• When g<<1 we have:


• This only solution is only valid for Gaussian bivariate functions 
with a Gaussian correlation function!
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• As the wavelength of the incident light increases (k0 decreases) the intensity of the second term (the specular lobe) decreases as
expected. On the other hand the width of the specular increases proportionally with λ.

For very rough surfaces the correlation function can be expanded in a coefficient of power series

Gaussian: C (τ) =1 − r2

T2 (49)

mathcalExponential: C (τ) =1 − r
T

(50)

6 Let’s try o simplify this equation
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α 4n
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(41)

Let’s try to match it with the Cook-Torrance equation

Pα (α) =
1

πm2 cos4 α
exp

(
− tan2 α

m2

)
, m2 =

4σ2
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(42)

thus we have

fr = T2
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gn
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exp

(
− tan2 α
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)
(43)

and we can write it in the following way
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r =

∞

∑
n=1

wn Pα,n (α) (44)

with the weights being given by
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∑
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∞
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n=0
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exp
(
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σ2
α 4n

)
(46)

Specular Spike Specular Lobe

g =

[

σh
2π

λ
(cos θi + cos θr)

]2
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For smooth surfaces (g # 1) only the first element in the series is significant. Therefore, equation 47 can be approximated to
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0 cos2 θ′ cos2 ασ2
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(48)

• As the wavelength of the incident light increases (k0 decreases) the intensity of the second term (the specular lobe) decreases as
expected. On the other hand the width of the specular increases proportionally with λ.

For very rough surfaces the correlation function can be expanded in a coefficient of power series

Gaussian: C (τ) =1 − r2
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mathcalExponential: C (τ) =1 − r
T

(50)

6 Let’s try o simplify this equation
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1
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Let’s try to match it with the Cook-Torrance equation

Pα (α) =
1

πm2 cos4 α
exp
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− tan2 α
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)
, m2 =

4σ2
α

g
(42)

thus we have

fr = T2
∞
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gn
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1

2n
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− tan2 α
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and we can write it in the following way

f Lobe
r =
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wn Pα,n (α) (44)

with the weights being given by

wn =
+∞
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I would like to write this in the following way

f Lobe
r = [1 − exp (−g)]
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gn

n!
g

4πσ2
α n cos2 α

exp
(
− g tan2 α

σ2
α 4n

)
(46)



Light Reflection in a Rough Surface - The Specular Spike
• The intensity of the specular spike is given by


• Depends only on the characteristic function of the 
height distribution Pz


• wz is corresponds to the z component of the vector 
wave change 


• For the Reflection:


• The surface looks rougher in the normal direction

• For the Transmission:


• The surface looks smoother in the normal direction
22
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Table 2. Distributions of microfacets implemented in the code.

P (a) D (a)∗ a = D−1 2L (q)†
Probability dist. Cumulative dist. Inverse cumulative dis. Shadowing/Masking

Cook-Torrance‡ 1
pm2 cos4 a

exp�− tan2 a
m2 � 1− exp�− tan2 a

m2 � arctan
�−m2 log (1− x) erf (m̃)+ 1

m̃
√

p
e−m̃2 − 1

Trowbridge-Reitz g2

p cos4 a�g2+tan2 a�2 1− g2

g2+tan2 a
arctan� g

�
x�

1−x
� �

1+g2 tan2 q − 1

Bivariate-Cauchy G(G+1)
2p cos3 a�G2+tan2 a� 3

2

1(1−G) �1− G
cos a

√
G2+tan2 a

� 1
2 arccos ��1+G2�(1+xG−x)2−2G2

�1−G2�(1+xG−x)2 � No analytic form††

x is a random number between 0 and 1.∗ D (a) is the cumulative distribution of the probability distribution P (a) cos a.
† L function according to the Smith model. The shadowing term is given by eq. (12), the masking term for reflection by eq. (18), and the

masking term for transmission by eq. (21).
‡ m̃ = 1� (m tan qr)
†† The integral 13 is not definite, but it can be integrated numerically.

ular lobe.1B17 The relative intensity of the two specular
components is given by the degree of coherence, Q, de-
fined as the ratio between the intensity of the light re-
flected coherently and the total intensity of the reflected
light. Q is related with the vertical displacements ob-
served in the surface, and it can be obtained by the follow-
ing characteristic integral [14, 27]

Q ≡ ��exp [iwzh (x, y)]��2 ≡ �� ∞
−∞ Pz (z) exp (iwzz)dz�2 ,

(6)
where wz corresponds to the z component of the vector
wave change, i.e. (kr −ki) ⋅ n in the reflection mode and(kt −ki) ⋅ n in the transmission mode. k corresponds to
the wave vector in the direction i, r, or t, with a magnitude
of

ki = kr = 2pn1�l or kt = 2pn2�l. (7)

B18The solutions of the eq. (6) for the reflected compo-
nent Qr are shown in the table 2. In this mode, the vector
wave change is wz = 2ki cos qi. For all of these distribu-
tions, the value Qr increases with qi and decreases with l,
meaning surface looks smoother for the larger angles of
incidence and rougher for larger values of l.

B19 Ref. [20] measured the intensity of the specular
spike, Qr, for various fluoropolymer surfaces (PTFE, PFA,
ETFE, FEP), wavelengths, and angles of incidence qi (sec-
tion 3) and observed that those results were not described
by any of the above distributions. As such, the following
empirical function was used instead

Qr (qi; ki, tz) = exp (−2kitz cos qi) , (8)

where tz is an empirical parameter related with the rough-
ness of the surface. We think this distribution might be
caused by an anisotropic distribution of Pz, but further

1This is performed before the application of Fresnel formulæ, because
those equations are estimated for a specific angle of incidence which
corresponds to the global angle of incidence, qi , for the specular spike or
the local angle of incidence, q′, for the specular lobe.

studies and possible measurements are needed to under-
stand this behavior.

In SOLARS, the value Qr is compared with a flat num-
ber, V, generated between 0 and 1. If V > Qr, the photon
scatters according to the global normal n, otherwise it
scatters according to the local normal n’ (Qr > V).

D. The local normal
B20 B21 The orientation of local normal is ob-
tained by sampling a and fa from the distribution
Pa (a, fa; sa) cos a. Given that all the distributions imple-
mented in SOLARS (table 2) are isotropic, fa is gener-
ated uniformly between 0 and 2p. The polar angle, a, is
sampled using the inverse cumulative function (or quan-
tile function) of the microfacet probability distribution
Pa cos a. The analytical form of these functions is shown
in the table 2. With both a and fa known, the local normal
n’ can be determined from

n′ = Rx (a)Rz (fa)n, (9)

where Rx and Rz are the rotation matrices around the x
and z axis respectively, assuming the surface average in
xy plane.

B22 We compare the three implemented functions in
the fig. 2, normalized in such a way that a=5○ for x=0.5.
Under that condition, the roughness of these three distri-
butions is related by

g =�log 2m = 1.7G. (10)

B23 As discussed by ref. [31], this sampled normal, n’,
still needs to be tested against a factor Ws to account for

• Surface shadowing: the fraction of the rough surface
that is not visible to the light with incoming direction
i with the light being shadowed by neighboring tips
of the rough surface instead. The probability that
the photon is not shadowed is given by the factor
Gi (qi; Pa) (details in section E).
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Fig. 5. Definition of the variables used in the multiple
scattered photons. Angles and vectors of the second
scatter are identified using the superscript S. The gray
region corresponds to the region in this rough surface
that is in the shadow, i.e. it is not visible to the photons
with the incoming direction i. In this specific case, the
angle of incidence of the second scatter, qS

i , is larger than
90○.

B38 To check if a photon is masked or not, we compare
a new random number xmask with the factor Gr. When
xmask < Gr, the photon leaves the surface undisturbed
with the angle of reflection qr adding to the specular lobe,
otherwise the photon is intercepted, and a new scattering
occurs at the surface. This takes place at a different posi-
tion on the surface with a new global angle of incidence
qS

i ≡ qr (eq. (17)) (the superscript (s) marks the variables
of the second scatter on the surface). The angle of inci-
dence of the new scatter (qS

i ) can be larger than 90○ as
exemplified in fig. 5. The new scatter position occurs at
different position in the surface, and thus it should have
a different local normal n′s, uncorrelated with the origi-
nal local normal n′. This new normal is sampled using
the same method as used before, but assuming no shad-
owing (Gi=1 in eq. (11)). In fact, the Gi is a macroscopic
term where all the surface is considered in the integration
eq. (13), while the multiple scattering occurs between two
or more points in the surface, often very close together.
Nonetheless, back-facing normals and the foreshortening
of the surface normals are still being considered using Ws.

B39 On average both qi and q′ are shallow angles (dis-
tributed around 90○, eq. (11)) requiring a large number
trials to get a slope that could be observed (see eq. (11)).
To reduce the number of iterations, the angle fa is sam-
pled between fa − 90○ and fa + 90○ for qS

i >90○—outside
this range the surface is not visible because it back-faces
the direction of the photons.

B40 Once a new slope has been determined, the Fresnel
equations are applied in the form F �q′S; n, k� to decide if
in this second scatter the light is reflected or transmitted.
When the photon is transmitted, it will be part of a diffuse
lobe, transmitted lobe, or absorbed according to the op-

tical properties of the second medium, otherwise a new
direction of reflection is sampled. Again, we need to test if
the photon is masked or not, and we repeat the same pro-
cess as before until the photon finally leaves the surface
into the original medium (medium 1) or the transmitted
medium (medium 2).B40z

The Transmitted photons
C01 In the next two sections, we will describe what hap-
pens to the photons transmitted to the medium 2. Their
fate depends on the optical nature of the material on the
other side of the interface. We’ve considered three dif-
ferent situations: i) absorption, ii) transmission, and iii)
diffuse reflection. Absorption is present when k is large
enough (k > 0.01 typically); in this case, the refracted pho-
tons are absorbed in the bulk and the SOLARS stops here
for these photons. Transmission happens for media that
are both fully transparent and non-dispersible for which
the code samples a transmitted direction t (section H). Dif-
fusion occurs in media that are dispersible; this requires
to sample a new reflecting direction r according to the
diffuse law (section I).

H. The transmitted lobe and transmitted spike
C02 The simulation of the transmittance in transparent
and non-dispersible media consists in the sampling of a
new direction t pointing towards the medium 2. Analo-
gous to the specular reflection, the light can be transmitted
coherently, yielding a spike, or incoherently, forming a
lobe. The probability of coherent transmission, Qt, de-
pends on the vector wave change wz given by

wz = (kt −ki) ⋅ n = 2p

l
(n1 cos qi − n2 cos qt) . (19)

Therefore, to compute the probability of coherent trans-
mission Qt, the factor 2n1 cos qi (equations on the ta-
ble 1) is replaced with (n2 cos qt − n1 cos qi), where qt =
arcsin (n sin qi).

C03 Figure 6 shows the probability of coherent reflec-
tion, Qr, or transmission, Qt, is represented as function of
cos qi, for the different height distributions and the empir-
ical function 8. Noteworthy, Qt decreases with qi in sharp
contrast with Qr.

C04 In a similar manner to the specular component,
when V < Qt, the light is transmitted in a refracted spike
along the direction 2

t = 1
n

i + �cos qi
n
+ cos qt�n, with cos qt =

�
1− sin2 qi

n2 .

Otherwise, if V > Qt, the light is refracted according to
the local normal n′ adding to the transmitted lobe. When

2To test if the photon is transmitted coherently or incoherently, the
value of Qt is compared with the same random number V computed
in the section B. This aims to reduce the hypothesis that the Fresnel
equations are computed using the local angle q′ (V > Qr) while the light
is transmitted according to a specular spike (V < Qr).

wz = (kr − ki) · n =
2π

λ
(n1 cos θr + n1 cos θi) =

4π

λ
cos θi
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Fig. 1. The system of coordinates used to describe the specular lobe: i represents the direction of incidence of the photons, r is the
direction of reflection and n and n′ are surface normal vectors, of the global (macroscopic) surface and of a local micro-surface.
Primed angles are measured relatively to the local normal n′. θ′ corresponds to the local angle of incidence and reflectance in the
specular reflection with cos θ′ = n′i = n′r

diffuse component. The diffuse lobe is usually assumed to follow the lambertian law (constant radiance), therefore not dependent of
the illumination conditions of the surface. However, in a inhomogeneous dielectric the diffuse lobe is caused by an internal scattering
of the light in the bulk of the material, being the light refracted twice in the interface. These two refractions should be included in the
description of this component [8]. nobody will understand this thing The roughness of the surface can alter also the distribution
of the light [22], increasing the reflectance in the backscatterer direction. This effect is only significant in very rough surfaces. totally
wrong The phenomenon of the incoherent backscattering [23] will not be included in our description because the goniometer is not
able to observe the backscatterer direction.

The present article is organized as follows: in the first part we describe some fundamentals of the roughness description and the
modeling used to describe the reflectance of the surface. Then we describe briefly the modeling used to describe the reflectance dis-
tribution. The modeling used is a mixed model where we have used a geometric optical approximation to describe the specular lobe
and the KA to obtain the intensities of the specular lobe and specular spike. Then we describe briefly the measurements performed
to the PTFE and modeling used to describe the surface roughness. In the last part of this article we present the experimental results
and we compare them with the predictions.

2. THE MODELING OF REFLECTION

The reflectance from a surface can be expressed by using a bidirectional reflectance intensity distribution function (BRIDF), fr, defined
as the ratio between the intensity reflected along a viewing direction, r, and the radiation flux, Φi, incident at the surface along the
direction i (see figure 1) [24]

fr (θi, φi; θr, φr) =
1

Φi

dΦr
dΩr

[1/sr] (1)

where dΦr/dΩr is the flux reflected per solid angle towards the viewing direction. ρ is a conceptual quantity because in real experi-
ments both the incident and viweing directions are defined inside a specific solid angle that can be made small, but still finite.

The function ρ will be disentangled into two different terms, a specular, ρs, and a diffuse term, ρd (subsurface/bulk scattering)
that will be treated separately in the next sections.

The reflectance of the surface will be described using the system of coordinates represented in the figure 1. The surface is itself
characterized by a global normal n with the angles of incidence (θi, φi) and reflection (θr, φr) measured relative to this normal. More-
over, in rough surfaces each point of the surface is characterized by a local normal n’ defined by the angles (α, φα). The local angle of
incidence and reflectance, θ′, corresponds to the angle between the incident direction i or reflecting direction r.

A. Roughness Description
It is a common perception that the brightness of a surface decreases when the roughness of a surface increases; this is caused by a
larger fraction of light that is reflected in a direction different from the specular direction. Therefore, we need to characterize this
feature to understand the reflection of the light in a rough surface. The roughness of the surface can be described by using a generic
height function z = h (x, y), with 〈h (x, y)〉 = 0, where z corresponds to the height relatively to the average plane of the surface
(in a smooth surface h (x, y) = 0). In non-deterministic surfaces this function is not known but it is possible to measure a set of
statistical parameters and statistical functions that could be used to describe the roughness of the surface. A comprehensive list of
these functions and parameters can be found in [25], here we only give some insight of the parameters/functions relevant for our
study. These are:

1. The height probability distribution function, Pz, which measures the probability that a random point in the surface has an
height in the interval [h, h + dh], usually it is explicitly dependent of of the root mean square of the surface σ2

h =
〈

h2 (x, y)
〉
. It

is normalized in ∫ +∞

−∞
Pz (z, σz)dz = 1 (2)

kz ≡ wz



Shadowing-Masking

• Shadowing: the roughness creates regions in the surface that are in a shadow, i.e. they 
are not visible for light incoming from a specific directions.


• Masking: the reflected light is blocked by a prominent tip of the surface.

23

4.4 The Geometric Optical Approximation

No Interference

Shadowed

Masked

Figure 4.15: Shadowing and masking effects in a rough surface. The light reflected in
the masked microarea is intersected by another part of the surface and is not able to
reflect specularly the light.

Below we describe two approaches that lead to explicit forms of the factor G: i) the
Torrance-Sparrow approach developed in the framework of a model of a set of micro-
facets and ii) the general approach due to Smith to tackle shadowing in general grounds
[189].

The Torrance-Sparrow geometric attenuation factor

The Torrance and Sparrow model describes the specular reflection by a set of plane
specular reflecting micro-facets. Symmetric V-groove all lying on the same plane where
considered to account for the masking and shadowing effects (figure 4.16). The upper
edges of the cavity lie in the same plane. Only the light that is reflected once in the
cavity is added to the specular lobe, the light that is multi-reflected win the cavity is
assumed to be reflected diffusely. Thus the geometric factor is given by the fraction of
the micro-facets that contributes to the specular lobe,

G = 1− (m/l) (4.77)

where m/l is the fraction of the micro-facet with a specific local normal n′ that is shad-
owed or masked. Torrance and Sparrow computed the two effects separately and con-
cluded that [7]

G (θi, θr, φr) = min (1,Gmsk,Gshd) (4.78)

105



Diffuse Reflection
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Diffuse Reflection (Bulk Reflection) - What it is?
• Diffuse Reflection: the light is refracted to the bulk, multi-

scattered in inhomogeneities of the material, and returns to 
the original medium.


• It is usually described by the Lambertian Model:


• We will write the reflectance (and transmittances) using the 
reflection factor R, in which the Lambertian law takes the 
form:


• Very rough surfaces can also produce a reflection pattern 
similar to the Lambertian reflection. So, there is some 
confusion with the term Diffuse Reflection.
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REFLECTED
LIGHT

Fig. 2 Geometry associated with expression for the Torrance-
Sparrow specular reflectance model.

e) 0.3

L[1-F(,n)] cos4
i-

F[sin 1 () ] } dw , (3) 0.25

' 0.2
where is the total diffuse albedo. Equation (3) has been
empirically verified to be very accurate.21'22 This expression
results from modeling diffuse reflection arising from (1) light
refraction from air into a dielectric medium, (2) subsurface
scattering within the dielectric medium according to radiative
transfer theory described by Chandrasekhar,28 and (3) light
from subsurface scattering refracting from the dielectric me-
dium back out into air (see Fig. 3). The major prediction of
this model different from that of Lambert' s law is that diffuse
reflection from inhomogeneous dielectrics is dependent on
emittance angle always falling off to zero as approaches
close to 90°. Also, diffuse reflection falls off faster than pre-
dicted by Lambert' s law as a function of angle of incidence
kJJ, particularly as kJJ approaches close to 90°.

The total diffuse albedo controls the strength of the
diffuse component and of interest to us in this paper is the
expression for in terms of the single scattering albedo p.
The details of this derivation are given in Ref. 21. The single
scattering albedo p with range [0,11 physically represents the
proportion of light energy reradiated on each single scattering
from a subsurface particle inhomogeneity. Clearly, energy
conservative scattering has p = 1.0. The expression for the
total diffuse albedo for an inhomogeneous dielectric sur-
face is

-1-K
where

p C(cos4i,cos)
2 —fl cos4c

C (cosii,cos4) =j_ cos4i
H(cos4i)H(cos)p 41T cosi+cos

Here H() is the Chandrasekhar H function for single scat-
tering albedo p, as defined in Ref. 28. Figure 4 shows total

Fig. 4 Total diffuse albedo plotted against single scattering albedo
p according to Eq. (4) for a dielectric with n— 1.7.

diffuse albedo as a function of single scattering albedo p
for index of refraction n = 1.7.

In the conservative case, p = 1 .0, the reflected irradiance
produced by integrating Eq. (3) over the entire hemisphere
is equal to the incident irradiance minus the irradiance re-
sulting from specular reflection at the boundary interface.
The value of is rather weakly dependent on angles 4 and
i. Over all angles of incidence and emittance, the value of

varies For the conservative case, the variation of
over the range of index of refraction n = [1.4,2.01 is 4%
relative to its value at n = 1.7. For smaller single scattering
albedos p, the dependence of total diffuse albedo on index
of refraction becomes much larger. For p �  0.975, diffuse
reflection decreases with an increase in index of refraction n.

3.1 Smooth Dielectrics
We propose that the total reflected radiance from smooth
inhomogeneous dielectric surfaces be the combined specular
and diffuse reflection from such surfaces described in Sec. 2.
The sum of these two components is

L[1 - F(i,n)1 cosi{ 1- F[sinl !] } dw
+ LF(i,n)i(Ji — + 1800) , (5)

for small solid angle dw at incidence angle and incident
azimuth angle 0 (emittance angle 4 and emitted azimuth
angle 0). A major difference between specular and diffuse
reflection phenomena is that specular reflection at a planar
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Rayleigh and Mie Scattering

• Rayleigh Scattering: scattering of the light with the 
molecules


• It is dominant for tiny particles (up to 1/10 of the 
wavelength)


• Mie Scattering: scattering of a plane wave from a 
sphere - produces a pattern like an antenna lobe, 
with a sharper and more intense forward lobe for 
larger particles


• Geometrical Optics: Light scattering by large 
particles can be understood through the concepts 
of geometrical optics (formation of rainbow).
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I = I0
8π4Nα2

λ4R2

(

1 + cos
2
θ
)

λ=500 nm and particles change 
from 50 nm to 5 μm



Simulation of Diffuse Reflection in a semi-infinite diffuser

• The diffuser slab has an infinite depth, and infinite x and y dimensions.

• We assume a linear scattering coefficient, αscat, of 1 and a specific linear 

absorption coefficient, σabs.

• The simulation starts at the surface with a specific angle of immersion.

• Henyen-Greenstein equation used to generate the scattering angle:
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P (θs) =
3

2

1 + cos2 θ

2 + g2
1− g2

(1− 2g cos θs + g2)
2

3

Absorption

g = -0.10

g = 0 (Rayleigh)

g = 0.10

Isotropic



Results - Isotropic
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Results - Dependence with the Phase Function

29

Conservative 
θi = 0 deg

σαabs = αscat/100 
θi = 0 deg

Re
fle

ct
an

ce
 F

ac
to

r

Re
fle

ct
an

ce
 F

ac
to

r



The Monte Carlo Simulations

• The Monte Carlo simulations are precise but they are also very slow as the light can 
scatter multiple times (up to 105 times) before returning back to the original medium or 
being absorbed.


• Also, the absorption cross section, the scattering cross section, the parameter g of the 
scattering are usually unknown (or difficult to measure) for most of the materials.


• The solution - Radiation Transfer Theory

30



Radiation Transfer Theory

• Plane -parallel: we assume that the length and width of the 
medium is infinite.


• Radiation Transfer equation (derived from the Boltzmann 
equation)


• χ is the phase function (e.g. isotropic is 1)

• I corresponds to the intensity of the radiation;

• μ = cos(θ) - measured relative to the surface’s normal. The 

angle φ is the azimuth.

• F is the incident flux

• τ corresponds the normal optical depth
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B. Notas Chandrasekhar
C. Radiative Transfer Theory and The Basic Definitions

1. Equação de Radiative Transfer

O que Chandra tenta resolver é a seguinte equação (pp12 p8 eq 63 e tb pp13 p9 eq71) e ele depois
acrescenta um termo que representa a luz que não sofreu nenhum scatter. O F corresponde ao
fluxo de luz

µ
∂I (t; µ, f)

∂t
= I (t; µ, f)� 1

4p

Z +1

�1

Z 2p

0
c
�
µ, f; µ0, f0� I (t; µ, f)dµ0df0

(9)

�1
4

Fe�t/µ0c (µ, f;�µ0, f0) (10)

O I é denominado de monochromatic specific intensity at frequency n (ver George Rybicki).

2. Optical Thickness

Chandra define optical thickness como pp9 p6 eq51

t
�
s, s0

�
=

Z s

s0
krds (11)

O George B. Rybicki chama isto de normal optical depth, ou normal optical thickness, que na
realidade é outra coisa. É definido como

t =
Z +•

z
krdz (12)

Também poderá ser definido da seguinte maneira

t = (ss + sa)l (13)

onde l é a thickness da amostra

3. Absorption Coefficient

O que é o k?

Chandra define-o em p2 pp5 eq22
dIn = �knrInds (14)

é o mass absorption coefficient for radiation of frequency n. O r é a densidade. Aqui Chandra
usa ns mas depois os suprimiu.

O Chandra chama o q de inclination to the outward normal

O Chandra chama de semi-infinite e finite

The finite is bounded between t = 0 e t = t1

4. Definição do single scatter albedo

v =
ss

ss + sa
, (15)
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Radiation Transfer Theory - The Phase Function

• The function χ corresponds to the phase function. It is a probability distribution function 
describing the angular dependence of the scattered radiation.

• For the Isotropic case:


• For the Rayleigh scattering:


• Etc

• For non-isotropic scattering, we have a system of integral equations which are non-

linear, non-homogeneous, and of high degree.
32
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B. Notas Chandrasekhar
C. Radiative Transfer Theory and The Basic Definitions

1. Equação de Radiative Transfer

O que Chandra tenta resolver é a seguinte equação (pp12 p8 eq 63 e tb pp13 p9 eq71) e ele depois
acrescenta um termo que representa a luz que não sofreu nenhum scatter. O F corresponde ao
fluxo de luz
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O I é denominado de monochromatic specific intensity at frequency n (ver George Rybicki).

2. Optical Thickness

Chandra define optical thickness como pp9 p6 eq51
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realidade é outra coisa. É definido como

t =
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z
krdz (12)

Também poderá ser definido da seguinte maneira

t = (ss + sa)l (13)

onde l é a thickness da amostra

3. Absorption Coefficient

O que é o k?

Chandra define-o em p2 pp5 eq22
dIn = �knrInds (14)

é o mass absorption coefficient for radiation of frequency n. O r é a densidade. Aqui Chandra
usa ns mas depois os suprimiu.

O Chandra chama o q de inclination to the outward normal

O Chandra chama de semi-infinite e finite

The finite is bounded between t = 0 e t = t1

4. Definição do single scatter albedo

v =
ss

ss + sa
, (15)

where single scatter 
albedo

χ (µ) =
3

4
"

(

1 + cos2 θ
)

χ (µ) = " ! =
αscat

αscat + αabs

Linear scattering 
coefficient [L-1]

Linear absorption 
coefficient [L-1]



Chandrasekhar Theory

• The seminal work of Subramanyan Chandrasekhar on 
radiation transfer was published in 1950, the result from 
this work from 1944-1948.


• The first solutions to the radiation transfer equation 
divided the radiation field into an outward and an inward 
stream of intensities. Chandrasekhar divided it into 2n 
streams.


• He solved the radiation transfer equation for semi-infinite 
(from τ=0 to τ=∞) and finite diffusers (in which case we 
have also transmittance). He also considered light 
polarisation.


• Here, I will present the main results for isotropic 
scattering but his book also contains the results for the 
Rayleigh scattering and (1+cosθ) phase function.
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Chandrasekhar Theory - Isotropic Scattering

• The diffuse-law for isotropic scattering is given by (μi=cos(θi) and μr=cos(θr)):


• Where H are the infamous functions defined as:


• There are analytic approximations!


• We have the following property:


• This is the integrated reflectance over the hemisphere - it is something that we can measure!
34

H (µ) = 1+!µH (µ)
1

0

1

µ + µ′
H

(

µ′
)

dµ′

R (µi; 2π) = 1−H(µi)
√

(1−")
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J. The Chandrasekhar Diffuse Model
The radiative transfer theory from S. Chandrasekhar, published in 1950 [15], was developed to
describe the light scatter in a planetary atmosphere, but, as discussed by ref. [9], it can also be applied
to describe the transport of light in diffusers. This theory assumes a parallel plane approximation
with all the optical properties depending only on the depth. Also below the surface of the dielectric,
the photons are presumably scattered isotropically and thus the reflection distribution is azimuth
independent relatively to the normal of the surface and regardless of the direction of the incident
light. With such approximation the scattering of the light can be calculated using the Chandrasekhar
diffuse law:

R (µi; µr) =
v

4
1

µi + µr
H (µi, w) H (µr, w) , (70)

where the functions H, the Chandrasekhar functions, describe the intensity of radiation scattered
by a semi-infinite medium of independent scatterers. These functions depend on the single-scatter

albedo, w, defined as the probability that the light is not absorbed between two consecutive scatters,
being given by

w =
ss

ss + sa
, (71)

where ss and sa correspond to the scattering cross-section and the absorption cross-section, respec-
tively.

The H functions are complex to compute and are usually approximated by a closed functional
form. Here, we employed the following two approximations:

• The simplest form from Hapke in 1981 [4]

H (µ, v) =
1 + 2µ

1 � 2µ
�p

1 � v
� (72)

with µ = cos q.

• The improved approximation made by Hapke in 1993 [5]

H (q, w) =

"
1 � µ

⇣
1 �

p
1 � w

⌘
⇥

⇥
⇢

r0 +
⇣

1 � r0
2
� r0 µ

⌘
log

1 + µ

µ

�#�1

r0 =
1

1 +
p

1 � w
� 1, with µ = cos q.

(73)

According to ref. [16], the relative error of the first approximation is less than 4% while the relative
error of the second approximation is less than 0.1% for w < 0.95 and less than 0.8% otherwise.

For a specific initial direction o, the probability that the photons return to interface between the
medium 2 and medium 1, and it is not absorbed during the scattering, rl is given by the integral of
eq. (70) for all possible directions d

rl (o; d) = 2p
Z p

2

0
R (o; d) sin qrdqr . (74)
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Results from the Chandrasekhar Theory

• There is a small difference, especially observed in the conservative case and for normal incidence. This is 
actually due to the light being transmitted. The slab simulated has a finite thickness because a infinite 
thickness would lead to an infinite simulation.
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Radiative Transfer - Transmission
• S. Chandrasekhar also included the transmission in his treatise (finite diffusers).

• If we assume isotropic scattering, transmission and reflection from a finite slab is determined from the single-

scatter albedo ϖ and optical depth τ.

• The reflectance and transmittance are given by:


• Where the X and Y functions are given by:


• As expected, when τ approaches the infinite X->H and Y->0.

• The calculation of the X and Y are an interesting mathematical problem. There are no known analytical 

approaches. Also Y has a zero for μ = μ’.

• Also, to get the hemispherical reflectances we need to integrate this over the hemisphere. 36
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12. Introduzindo a equação típica de Hapke

rl (µoµe) = 2p
l (2 � l)

4
H (l, µo)

Z 1

0

µe
µo + µe

1 + 2µe
1 + 2µe (1 � l)

dµe, (40)

13. O integral dá
Z 0

�1

µr
µi + µr

1 + 2µr
1 + 2µr (1 � l)

dµr =
1

2bµi � 1

"

(1 � 2µi) µi log (µi + µr) +

l

2 (1 � l)2 log (2µr (1 � l) + 1)

#
+

µr
1 � l

(41)

E. Finite Diffusers
1. As equações de reflexão e transmissão para o scattering isotrópico são dadas por

A primeira o Chandra chama de I (0, µ). Eu aqui digo que o R = I/F assim e T igual, assim
fica (verificar as equações)

R (t, v, o; e) =
v

4
µo

µe + µo
[X (µe) X (µo)� Y (µe)Y (µo)] (42)

T (t, v, o; e) = d (µ � µ0) e�t/µ +
v

4
µo

µe � µo
[Y (µe) X (µo)� X (µe)Y (µo)] (43)

R (µi, µr) =
v

4
µi

µi + µr
[X (µi) X (µr)� Y (µi)Y (µr)] (44)

T (µi, µt) = d (µi � µt) e�t/µi +
v

4
µi

µt � µi
[Y (µt) X (µi)� X (µt)Y (µi)] (45)

2. As funções X e Y são dadas por

X (µ) = 1 +
v

2
µ
Z 1

0

1
µ + µ0

⇥
X (µ) X

�
µ0�� Y (µ)Y

�
µ0�⇤

(46)

Y (µ) = e�t/µ +
v

2
µ
Z 1

0

1
µ � µ0

⇥
Y (µ) X

�
µ0�� X (µ)Y

�
µ0�⇤

(47)

For non-isotropic scattering, we have a system of integral equations which are non-linear,
non-homogeneous, and of high degree.

F. Scattering
1. Do Scattering de Rayleigh

I = I0
8p4Na2

l4R2

⇣
1 + cos2 q

⌘
(48)

2. The phase function is given by

c (µ) =
3
4

v
⇣

1 + cos2 q
⌘

(49)
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Radiative Transfer
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Y !

1

τ + 1.42
HX !

(

1−
1

τ + 1.42

)

H

• We also created sims for transmission for different 
slabs defined as:


• Where d corresponds to the thickness in units of 
length.


• The optical depth is given by:


• We calculated the reflection and transmission using 
the X and Y functions, for different values of ϖ and τ. 
This is difficult and not efficient to be used in 
simulations.


• For the conservative case (ϖ=1), we have the 

s = d · αscat

τ = d · (αscat + αabs)

Absorption

Transmission

Reflection



Radiative Transfer - Results from Sims

38

s=5

Reflection Transmission

s=5

s=10 s=10

Dashed lines are 
the predictions 

from the 
Chandrasekhar 

theory for a semi-
infinite diffuser 

(s=∞)

Dotted lines are 
the predictions 

from the 
Chandrasekhar 

theory for a finite 
(X and Y functions) 
assuming isotropic 

scattering



Diffuse Lobe - Effect of the Interface
• The light has to be first refracted to the diffuser:


• And refracted from the diffuser:


• The light reflected has additional additional scattering, 
where it can be absorbed or not. Assuming the 
Lambertian model — R = ρm in which ρm corresponds to 
the probability that the light survives in each multiple 
scattering process, we have:


• Which results in:
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Incident Light

Internal 
Scattering

n2

n1

θ0 θ'

1  Order

Shadowing

st 2  Orderndθi
θr

θd
d

Absorption

F is the probability of 
reflection

Calculated with the 
Fresnel Equations
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H. The Lambertian and Wolff Models
Mostly, the diffuse reflection is described using purely empirical methods. The simplest and al-
most universal approximation corresponds to the Lambertian Model, which assumes a constant
bidirectional reflection factor

R (i; r) = $, (54)

where $l corresponds to the albedo of the surface. It is defined as the ratio between the light flux,
which is diffusely reflected relative to the light incident at the surface.

As described by many authors [9, 10], the observed reflectance deviates from a pure Lambertian
model in many practical situations, such as when the angles qi or qr are large or for very rough
surfaces. Therefore, new models have been developed to describe this component in much more
detail.

The Monte-Carlo model described here corresponds to an adaptation of the analytical model
developed by Lawrence Wolff [9] to the Monte Carlo simulation. The Wolff model is a physically
based model that takes into account the probability of reflection both at the entrance and at the exit
of the diffuser, being characterized by the following bidirectional reflection factor:

Rdiff (i; r) =$d (n)Y (i; r; Pa)⇥
[1 �F (qi; n, a)]⇥ [1 �F (sin qt; 1/n, 1/2)] ,

(55)

where $d, the multiple-diffuse albedo, sets the intensity of the diffuse reflection and qt = arcsin (sinqi/n).
The effect of the roughness of the surface in the diffuse reflection is considered using the factor Y
from the Oren-Nayar model [10]. The roughness of the surface affects the diffuse reflectance due
to factors such as foreshortening of the surface facets (this corresponds to the factor cos q0/ cos qi
described in ref. [1]), shadowing, masking, and multiple scattering in the surface. An analytical
expression for Y , assuming a V-Groove approximation of Torrance-Sparrow shadowing theory, is
well known and is described in ref. [10]. However, the factor Y depends, in general, on the slope
distribution Pa described in [1] and is calculated through the following integration

Y =
1

(n · i) (n · r)

Z

2p

(n0 · i) (n0 · r)
(n · n0)

G (Pa) Pa
�
n
0�dn

0. (56)

1 � F (n; qi) (57)

1 � F (n; qr) (58)

R = [1 � F (n; qi)] ·
n

rm + rm
⇥
rmF

�
n; q0

�⇤
+ rm

⇥
rmF

�
n; q0

�⇤2
+ ...

o
· [1 � F (n; qr)] (59)

R =
rm

1 � F̄(n)rm
[1 � F (n; qi)] · [1 � F (n; qr)] (60)

The solution of this integral is usually complex, and there is no known analytical result. Oren
and Nayar ([10]) have parametrized this integral for a gaussian distribution of slopes and the Cook-
Torrance shadowing theory. As we shall see in the next section, solving this integral is not required
when using a Monte Carlo simulation.

The two Fresnel factors of the Wolff model (eq. (55)) account for the external refraction ([1 �F (qi; n)]),
and the internal refraction ([1 �F (sin qt; 1/n)]). These factors are smaller than 1, reducing the re-
flectance along a particular direction of incidence and reflectance. However, the light is not absorbed
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and the internal refraction ([1 �F (sin qt; 1/n)]). These factors are smaller than 1, reducing the re-
flectance along a particular direction of incidence and reflectance. However, the light is not absorbed
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H. The Lambertian and Wolff Models
Mostly, the diffuse reflection is described using purely empirical methods. The simplest and al-
most universal approximation corresponds to the Lambertian Model, which assumes a constant
bidirectional reflection factor

R (i; r) = $, (54)

where $l corresponds to the albedo of the surface. It is defined as the ratio between the light flux,
which is diffusely reflected relative to the light incident at the surface.

As described by many authors [9, 10], the observed reflectance deviates from a pure Lambertian
model in many practical situations, such as when the angles qi or qr are large or for very rough
surfaces. Therefore, new models have been developed to describe this component in much more
detail.

The Monte-Carlo model described here corresponds to an adaptation of the analytical model
developed by Lawrence Wolff [9] to the Monte Carlo simulation. The Wolff model is a physically
based model that takes into account the probability of reflection both at the entrance and at the exit
of the diffuser, being characterized by the following bidirectional reflection factor:

Rdiff (i; r) =$d (n)Y (i; r; Pa)⇥
[1 �F (qi; n, a)]⇥ [1 �F (sin qt; 1/n, 1/2)] ,

(55)

where $d, the multiple-diffuse albedo, sets the intensity of the diffuse reflection and qt = arcsin (sinqi/n).
The effect of the roughness of the surface in the diffuse reflection is considered using the factor Y
from the Oren-Nayar model [10]. The roughness of the surface affects the diffuse reflectance due
to factors such as foreshortening of the surface facets (this corresponds to the factor cos q0/ cos qi
described in ref. [1]), shadowing, masking, and multiple scattering in the surface. An analytical
expression for Y , assuming a V-Groove approximation of Torrance-Sparrow shadowing theory, is
well known and is described in ref. [10]. However, the factor Y depends, in general, on the slope
distribution Pa described in [1] and is calculated through the following integration

Y =
1

(n · i) (n · r)

Z

2p

(n0 · i) (n0 · r)
(n · n0)

G (Pa) Pa
�
n
0�dn

0. (56)

1 � F (n; qi) (57)

1 � F (n; qr) (58)

R = [1 � F (n; qi)] ·
n

rm + rm
⇥
rmF

�
n; q0

�⇤
+ rm

⇥
rmF

�
n; q0

�⇤2
+ ...

o
· [1 � F (n; qr)] (59)

R =
rm

1 � F̄(n)rm
[1 � F (n; qi)] · [1 � F (n; qr)] (60)

F̄(n) = 2p
Z p/2

0
F
�
n, q0

�
cos q0 sin q0dq0df0

(61)

The solution of this integral is usually complex, and there is no known analytical result. Oren
and Nayar ([10]) have parametrized this integral for a gaussian distribution of slopes and the Cook-
Torrance shadowing theory. As we shall see in the next section, solving this integral is not required
when using a Monte Carlo simulation.

1st order

With

2nd order 3rd order



Diffuse Lobe - Effect of the Interface - What this Means?
• The effect of the interface was included in both the 

Chandrasekhar model and the Lambertian model.

• In many situations the Lambertian model is sufficient to 

describe the diffuse reflectance, when:

• The relative refractive index is larger than 1;

• The angle of incidence is small;


• What happens when the first medium where the 
photon originally travels changes?


• When a diffuser is immersed in a liquid, the 
reflectance should increase because F(n) 
approaches zero.
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θi=0 deg

θi=85 deg

n = 1.33

n = 1.33
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H. The Lambertian and Wolff Models
Mostly, the diffuse reflection is described using purely empirical methods. The simplest and al-
most universal approximation corresponds to the Lambertian Model, which assumes a constant
bidirectional reflection factor

R (i; r) = $, (54)

where $l corresponds to the albedo of the surface. It is defined as the ratio between the light flux,
which is diffusely reflected relative to the light incident at the surface.

As described by many authors [9, 10], the observed reflectance deviates from a pure Lambertian
model in many practical situations, such as when the angles qi or qr are large or for very rough
surfaces. Therefore, new models have been developed to describe this component in much more
detail.

The Monte-Carlo model described here corresponds to an adaptation of the analytical model
developed by Lawrence Wolff [9] to the Monte Carlo simulation. The Wolff model is a physically
based model that takes into account the probability of reflection both at the entrance and at the exit
of the diffuser, being characterized by the following bidirectional reflection factor:

Rdiff (i; r) =$d (n)Y (i; r; Pa)⇥
[1 �F (qi; n, a)]⇥ [1 �F (sin qt; 1/n, 1/2)] ,

(55)

where $d, the multiple-diffuse albedo, sets the intensity of the diffuse reflection and qt = arcsin (sinqi/n).
The effect of the roughness of the surface in the diffuse reflection is considered using the factor Y
from the Oren-Nayar model [10]. The roughness of the surface affects the diffuse reflectance due
to factors such as foreshortening of the surface facets (this corresponds to the factor cos q0/ cos qi
described in ref. [1]), shadowing, masking, and multiple scattering in the surface. An analytical
expression for Y , assuming a V-Groove approximation of Torrance-Sparrow shadowing theory, is
well known and is described in ref. [10]. However, the factor Y depends, in general, on the slope
distribution Pa described in [1] and is calculated through the following integration

Y =
1

(n · i) (n · r)
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1 � F (n; qi) (57)

1 � F (n; qr) (58)

R = [1 � F (n; qi)] ·
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⇥
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· [1 � F (n; qr)] (59)

R =
rm

1 � F̄(n)rm
[1 � F (n; qi)] · [1 � F (n; qr)] (60)

The solution of this integral is usually complex, and there is no known analytical result. Oren
and Nayar ([10]) have parametrized this integral for a gaussian distribution of slopes and the Cook-
Torrance shadowing theory. As we shall see in the next section, solving this integral is not required
when using a Monte Carlo simulation.

The two Fresnel factors of the Wolff model (eq. (55)) account for the external refraction ([1 �F (qi; n)]),
and the internal refraction ([1 �F (sin qt; 1/n)]). These factors are smaller than 1, reducing the re-
flectance along a particular direction of incidence and reflectance. However, the light is not absorbed



Diffuse Lobe - Effect of the Interface
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But wet surfaces look darker!



Diffuse Lobe - Wet Surfaces
• We do not observe the surface directly in the liquid 

interface. As such, we have to consider the 
refraction from the liquid to the air (and the 
respective multiple reflections)


• For some surfaces, such as soil and paper, the 
material absorbs the liquid, changing the value of 
ρm.
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Spheres with n = 1.5 in a 
medium with n = 1.0

Spheres with n = 1.5 in a 
medium with n = 1.33



Computer Vision

• Some models used in the computer vision are not physically based. For example, one of the 
most used models is the Phong model:


• Where kd controls the diffuse reflection and ks controls the specular reflection.

• It might be worth to adapt some of the models that we have discussed to computer vision.
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I = kd cos θ + ks (cosα)
n′



Conclusions:
• The reflectance has two main components - 

diffuse and specular.

• To describe the specular reflectance, we 

have to understand how the light scatters in 
a rough surface.


• We described the reflectance and 
transmittance of a diffuser using the 
radiative transfer model as described by the 
Chandrasekhar in 1950 and we compared it 
with the Monte-Carlo simulations.


• We added the effect of the interface in the 
diffuse reflection (Saunders correction).


• This reflectance model is partially available 
in ANTS2 (specular and diffuse reflectance 
of semi-infinite diffusers).
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Future Work

• Find appropriated approximations to the 
functions X and Y (almost done);


• Calculate the inverse cumulative functions of 
the Chandrasekhar function H;


• Implement the reflectance and transmittance 
models for finite diffusers in ANTS3;


• Systematisation of the form of the specular 
lobe for different types and levels of 
roughness;


• Add the dependence with the wavelength in 
the reflectance model (currently the 
reflectance model is purely geometric).


• You are welcome to collaborate in this work!
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