Quantitative study of structural distortions in the interface region of solar cells, using implanted positive muons

Coimbra group: Helena V. Alberto, R. Vilão, E. Ribeiro, J. M Gil, A. Weidinger
INL group: Pedro Salomé, Marco Curado, Jennifer Teixeira, José Cunha
Uppsala, Sweden: Marika Edoff

Low Energy Muons team, PSI: Maria Martins, Thomas Prokscha, Zaher Salman

Coffee with Physics 23 November, 2022

Coffee first, than physics

Coimbra Group

INL : The Nanofabrication for Optoelectronics Application (NOA) group in Braga (leader: Pedro Salomé)

Paul Scherrer Institut – PSI - Switzerland

Muon production

 Producing pions by colliding protons into a target of light elements (carbon or beryllium):

 $p + p \rightarrow p + n + \pi^+$

• Pions decaying at rest produce 100% polarized muons

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

- Muons decay with an average lifetime of 2 μ s ; the positron is emitted preferentially in the spin direction.
- The difference between counts in Forward and Backward detectors leads to experimental Asymmetry of the emitted positrons.
- The experimental Asymmetry yields the muon polarization at the moment of decay.

$$\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$$

Schematic of a typical µSR spectrometer

Positrons generated by decay of muons at rest in a sample are measured using counters placed in front of and behind the sample.

TF μ SR signal of μ^+

$$N(t) = N_0 \exp\left(-\frac{t}{\tau_{\mu}}\right)(1 + a_0 P_x(t))$$

 a_o is the empirical maximum; B defines z direction

Muon polarization in x direction:

TF μ SR signal if the muon remains in a positively charged state (diamagnetic signal).

Low-Energy Muons Group (LEM)

Low energy muons (LE- μ +) with tunable energy between ~0.5 and 30 keV penetrate only to a depth between a few and few hundreds of nm, depending on their energy. Hence they provide the desired non-destructive, non-invasive and microscopic probe for local investigations of properties near surfaces and in thin samples.

LEM Group

Maria Inès Mendes Martins PhD Student +41 56 310 28 38 maria.martins@psi.ch

Dr. Xiaojie Ni PostDoc +41 56 310 41 91 xiaojie.ni@psi.ch

Dr. Thomas Prokscha LMU Head a.i. LEM Group Head LEM Scientist +41 56 310 42 75 thomas.prokscha@psi.ch

Dr. Andrea-Raeto Raselli Data Acquisition / Computing +41 56 310 36 10 andrea.raselli@psi.ch

Dr. Zaher Salman Research Scientist +41 56 310 54 57 zaher.salman@psi.ch

Dr. Andreas Suter LEM Scientist +41 56 310 42 38 andreas.suter@psi.ch

Coimbra and INL at LEM, PSI, Switzerland

Muonium as a model for isolated hydrogen in semiconductors and insulators

- Behaves as a light isotope of hydrogen
- It is unstable: τ_{μ}^{\sim} 2.2 µs
- Mu⁰, Mu⁺ Mu⁻ states and configurations similar to H⁰, H⁺ H⁻ states and configurations
- Introduces donor and acceptor levels in the gap similar to the hydrogen levels
- Most of the existing information of isolated hydrogen in semiconductors was obtained from μSR

H : Mu = 1 : 1/9

Positive muons as probes to defect regions in semiconductors

Samples

```
cover layer: CdS, ZnSnO, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>
```

Absorber: chalcopyrite Cu(In,Ga)Se₂ (CIGS)

LEM measurements

Defect-induced strain

- The muon probe may be sensing effect of charges at the interface or may be sensing defects.
- No evidences for an effect of charges
- Formation of the diamagnetic configuration requires rearrangement of the lattice around the muon
- It occurs more easily in an ordered lattice than in a distorted lattice.
- Defects (such as vacancies or interstitials) induce a long-range disturbance of the lattice which affects the formation probability of the diamagnetic signal.
- we use the diamagnetic fraction as a measure for defect induced strain.

The model

- The formation of the diamagnetic bound state requires lattice rearrangement, which can be described as a potential barrier.
- Lattice strain induced by defects increases the barrier height and reduces the formation probability of the bound diamagnetic state.
- That is the origin of the dip in the diamagnetic signal: the muon probe is sensing a defect region.

Reaction coordinate

Where is the dip situated? Using resolution information from TRIM.SP

• The experimental $f_{dia}(E)$ is the result from a convolution of the real $f_{dia}(x)$ with the normalized stopping distribution P(x,E), obtained by Monte Carlo simulations (TRIM.SP).

The real profile $f_{dia}(x)$ is washed out because not all muons stop at the same depth.

Unfolding the depth profile

results

$$f_{\rm dia}^{\rm exp.}(E) = \int_0^\infty P(E', E) f_{\rm dia}(E') \, dE'$$

- the trial function for $f_{dia}(E')$ is a simple three step function with 5 adjustable parameters. A fit is performed to obtain the parameters that lead to the best description of the experimental data $f_{dia}^{exp.}(E)$
- the relation x = f(E') is used to convert E_1 and E_2 - E_1 in widths measured in nm.
- The best fit to the trial function shows that the lattice is more perturbed in the near-interface region, on the side of the absorber, than further inward in the sample.

Changing cover layers

(a) : unconvered CIGS and the effect of ZnSnO and CdS covers

(b) : effect of Al2O3 with different widths on the same uncovered CIGS

(c) : effect of SiO2 with different surface charges on the same uncovered CIGS

Measuring passivation of bulk defects near the p-n junction

- the passivation effect near the p-n region is quantified : it is defined as the dip size of the uncovered film divided by the dip size of the covered film.
- CdS provides the best defect passivation.
- Oxide materials are less effective.

Conclusions

- Slow muons are sensitive only to a region near the p-n interface (region 2), which is more disturbed than the inner part of CIGS.
- A disturbed interface region is associated with interface recombination losses, affecting the device efficiency. It is important to distinguish contributions from regions 1 and 2.
- Slow muons allows us to separate contributions from region 1 and 2, not possible with other techniques.
- Using slow muons, it is possible to make a quantitative characterization of the effect of various buffer/cover layers on the passivation of bulk defects in this region.

Open Questions

- How does the disturbed interface region observed by muons relate to interface recombination losses?
- Does this disturbed interface region affect ion diffusion (namely Cd) into CIGS? If yes, how?
- How does the disturbance in this region relate to macroscopic parameters such as quantum efficiency, open circuit voltage in the operating solar cell?

Project SolarCells@CFisUC

- First step : workshop INL@CFisUC next week 30 Nov 2022, after café com Física Program
- 15:15-15:20 (5 minutos) Welcome ; project SolarCell@CFisUC
- 15:20 15:40 (20m) Introduction to the International Iberian Nanotechnology Laboratory (INL) and the Nanofabrication for Optoelectronics Application group (NOA), by Pedro M.P. Salomé
- 15:40 15: 50 (10m) Nanofabrication for ultrathin CIGS solar cells novel architectures, by Jennifer P. Teixeira
- 15:50 16:00 (10 m) Passivation strategies for CIGS solar cells by Marco A. Curado
- 16:00 16:20 (20 m) Optical Simulations of CIGS solar cells, by A. J. N. Oliveira
- 16:20 16: 40 (20m) SCAPS 1D electrical simulation software, A. Violas
- 16:40- 17:00 (20 m) Questions and discussion
- 17:00 coffee break

Participants so far

- 16 students
- Coimbra group+ NOA