Are hyperonic degrees of freedom present in neutron stars?

Constança Providência

Universidade de Coimbra, Portugal

HADES Mini-simposium, 23 September, 2022

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ■

Motivation

- What do hypernuclei tell us about the neutron star EoS?
- Which are possible signatures of the presence of hyperons inside neutron stars?

What do the constraints tell us about hyperons in hot dense matter?

Probing the interior of Neutron Stars

- Neutrons stars provide a laboratory for testing
 - nuclear physics: high density, highly asymmetric matter
 - QCD: deconfinement, quark matter, superconducting phases
 - nuclear superfluidity: critical temperature, properties
- ► microscopic model → equation of state → mass-radius

► equation of state → maximum mass and spin frequency, moment of inertia

QCD phase diagram

A.Watts et al, arXiv:1501.00042v1

ヘロト 人間 とくほ とくほ とう

ъ

Neutron star interior

Hybrid stars :

э

What is the effect of hyperons in NS?

► Is it possible to satisfy hypernuclei properties and have $2M_{\odot}$ NS?

What do experimentally constrained hyperonic EoS tell us?

・ロット (雪) (日) (日)

What is the effect of hyperons in NS?

► Is it possible to satisfy hypernuclei properties and have $2M_{\odot}$ NS?

What do experimentally constrained hyperonic EoS tell us?

A B > A B > A B >

ъ

How to attain $2M_{\odot}$?

Additional repulsion is needed!

- inclusion of a repulsive YY interaction (through the exchange of vector mesons, higher order couplings or density dependent couplings)
- inclusion of repulsive hyperonic three-body forces
- possible a phase transition to deconfined quark matter at densities below the hyperon threshold

. ・ ・ ・ ・

However, the high density nucleonic EoS is not constrained!

Constraints on the EoS

 $\blacktriangleright~B\sim$ 16 MeV, $ho_0\sim$ 0.15 - 0.16 fm $^{-3}$

(nuclear masses, density distributions)

- $K = 230 \pm 40$ MeV (from analysis of ISGMR Khan PRL109)
 - but 250 < K < 315 MeV in Stone 2014</p>
- constraints in J L plane:
 - ► J = 29.0 32.7 MeV, L = 44 66 MeV (Lattimer et al 2013,2014)
 - ► $J = 31.7 \pm 3.2$ MeV, $L = 58.7 \pm 28.1$ MeV (Oertel et al 2017)
- theoretical ab-initio calculations for neutron matter
- astrophysical observations: $2M_{\odot}$, *R*, tidal deformability

Nuclear constraints

Neutron matter microscopic calculations

- chiral effective field theory constrain the properties of neutron matter up to ρ₀ (Hebeler et al 2010, 2013)
- realistic two- and three-nucleon interactions using quantum Monte Carlo techniques (Gandolfi et al 2012)

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Imposing $2M_{\odot}$

Fortin et al PRC 94,035804

- All EoS are causal and predict $M > 2.M_{\odot}$
 - range of radii spanned: $3km (1M_{\odot})$ and $4km (2M_{\odot})$
- imposing lab and theoretical constraints:only 4 models remain
 - range of radii spanned: $1 \text{ km} (1 M_{\odot})$ and $2 \text{ km} (2 M_{\odot})$
 - large high mass uncertainty: lack of constraints on high density EoS!

High density constraints

(Kurkela ApJ 789, 2014)

- T = 0 high density perturbative QCD (pQCD)
 - state-of-that-art (Kurkela et al PRD81 2010): perturbative calculation

(日) (日) (日) (日) (日) (日) (日)

EOS converges reasonably well for µ_B > 2.6GeV

High density constraints

(Annala et al Nature 2021)

- T = 0 high density perturbative QCD (pQCD)
- ▶ low density: CET ab-initio calculations of neutron matter(Hebeler et al 2013)
- Interpolation: large numbers of individual EoSs generated with the speed-of-sound interpolation method.
- Agnostic approach: no information on composition

EOS: relativistic mean field description

RMF Lagrangian for stellar matter

Lagrangian density

- Lorentz-covariant Lagrangian with baryon densities and meson fields
- causal by construction

 $\mathcal{L}_{NLWM} = \sum_{B=baryons} \mathcal{L}_{B} + \mathcal{L}_{mesons} + \mathcal{L}_{I},$

► Baryonic contribution: $\mathcal{L}_B = \bar{\psi}_B \left[\gamma_\mu D_B^\mu - M_B^* \right] \psi_B$, $D_B^\mu = i\partial^\mu - g_{\omega B}\omega^\mu - \frac{g_{\rho B}}{2}\tau \cdot \mathbf{b}^\mu - g_{\phi B}\phi^\mu$ $M_B^* = M_B - g_{\sigma B}\sigma - g_{\sigma^*B}\sigma^*$

Meson contribution

$$\mathcal{L}_{\textit{mesons}} = \mathcal{L}_{\sigma} + \mathcal{L}_{\omega} + \mathcal{L}_{\rho} + \mathcal{L}_{\sigma^*} + \mathcal{L}_{\phi} + \mathcal{L}_{\textit{non-linear}}$$

. ・ ・ ・ ・

• Lepton contribution: $\mathcal{L}_{l} = \sum_{l} \bar{\psi}_{l} \left[\gamma_{\mu} i \partial^{\mu} - m_{l} \right] \psi_{l}$

Constraining the density functional with hypernuclei

- Self-consistent calculation of Λ-hypernuclei
- single *Λ*-hypernuclei binding energies: fix the *σ*-hyperon coupling
- double Λ -hypernuclei: fix the σ^* -hyperon coupling
- a weak A-nuclear spin-orbit interaction: tensor term (Noble 1980, Shen 2006)

$$\mathcal{L}_{T\Lambda} = \bar{\psi}_{\Lambda} \frac{f_{\omega\Lambda}}{2M_{\Lambda}} \sigma^{\mu\nu} \partial_{\nu} \omega_{\mu} \psi_{\Lambda} ,$$

• vector meson ω and ϕ -hyperon: SU(6) symmetry

$$R_{\omega}=2/3, \qquad R_{\phi}=-\sqrt{2}/3, \qquad R_i=g_{Yi}/g_{Ni}$$

. 《曰》《禪》《臣》《臣》 臣 - 외익()

ρ-meson does not couple to Λ but couples to Σ and Ξ

Hypernuclei

• $\Lambda\Lambda$ binding from double and single Λ -hypernuclei

$$\Delta B_{AA} = B_{AA} \begin{pmatrix} A \\ A \\ A \end{pmatrix} - 2 B_A \begin{pmatrix} A \\ A \end{pmatrix}$$

Unambiguous measurement ⁶_{AA}He by KEK (2001)

$$\Delta B_{AA} = 0.67 \pm 0.17 \text{MeV}$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

3

Hypernuclei

 \varXi and \varSigma

3E (MeV)

• no unambiguous Σ -hypernucleus: most probably Σ -nucleus potential repulsive

Phenomenology: $+30 \pm 20$ MeV (Gal et al 2015)

Chemical equilibrium

Prakash et al PhysRep (1997)

Hyperon content is determined by equilibrium conditions

$$B_1 \rightarrow B_2 + \ell + \bar{\nu}_\ell, \qquad B_1 + \ell \rightarrow B_2 + \nu_\ell$$

Chemical equilibrium (neutrino free matter)

$$\mu_B = \mu_n - q_B \mu_e$$

Chemical equilibrium (neutrino trapped matter)

$$\mu_B = \mu_n - q_B(\mu_e - \mu_{\nu_e})$$

Charge neutrality

$$\sum_{B} q_B x_b + \sum_{l} q_l x_l = 0$$

・ シック・ 単 - 《 単 》 《 町 》 《 ロ 》

 $x_i = \rho_i / \rho$

Hyperonic stars

Fortin et al PRC 95

Vector meson couplings

choice a: SU(6) symmetry for ω , varying ϕ -hyperon **choice b**: $g_{Y\omega} = g_{N\omega}$, varying ϕ -hyperon ρ -meson: $g_{\rho\Xi} = \frac{1}{2}g_{\rho\Sigma} = g_{\rho N}$

・ロット (雪) (日) (日)

• Σ - σ coupling: $U_{\Sigma}^{N}(n_{0}) = 0, +30 \text{ MeV}$

► Ξ - σ coupling: $U_{\Xi}^{N}(n_{0}) = -14 \text{ MeV}$

Nucleonic versus hyperonic EoS: Bayesian Approach

(Malik 2022 arxiv:2205.15843)

- Hyperons couplings in DDBA and DDBAΞ: SU(6) for vector mesons, constrained by hypernuclei for σ-meson
- No hyperons: maximum mass $\approx 2.5 M_{\odot}$, $R_{1.4} \gtrsim 12$ km
- Hyperons: maximum mass $\approx 2.2 M_{\odot}$, $R_{1.4} > 12.5$ km

Nucleonic RMF EoS (Bayesian Approach): how limitative is the method? (Malik 2022 arxiv:2205.15843)

- ▶ 99% CI *pneµ*, no-hyperons
- Constraints: $M \ge 2M_{\odot}$, χ EFT, nuclear properties

・ コット (雪) (小田) (コット 日)

Direct Urca process: nucleonic stars

The most efficient NS cooling mechanism

$$n \rightarrow p + e^- + \bar{\nu}_e, \qquad p + e^- \rightarrow n + \nu_e.$$

Momentum conservation implies

$$p_{\text{F}n} \le p_{\text{F}p} + p_{\text{F}e}, \rightarrow Y_p^{\min} = 1/\left(1 + \left(1 + x_e^{1/3}\right)^3\right), x_e = \frac{n_e}{n_e + n_\mu}$$

Direct Urca process: hyperonic stars

In the presence of hyperons, other channels are opened for neutrino emission (Prakash 92)

$$\begin{split} \Sigma^- &\to \Sigma^0 \ell^- \bar{\nu}_\ell, \quad R = 0.61 \quad \Xi^- \to \Xi^0 \ell^- \bar{\nu}_\ell, \quad R = 0.22 \\ \Sigma^- &\to \Lambda \ell^- \bar{\nu}_\ell, \quad R = 0.21 \quad \Xi^0 \to \Sigma^+ \ell^- \bar{\nu}_\ell, \quad R = 0.06 \\ \Lambda \to \rho \ell^- \bar{\nu}_\ell, \quad R = 0.04 \quad \Xi^- \to \Sigma^0 \ell^- \bar{\nu}_\ell, \quad R = 0.03 \\ \Xi^- \to \Lambda \ell^- \bar{\nu}_\ell, \quad R = 0.02 \quad \Sigma^- \to n \ell^- \bar{\nu}_\ell, \quad R = 0.01 \end{split}$$

Amount of Σ -hyperons affects strongly cooling! Nucleon - electron DUrca defined by

$$\left(\frac{n_p}{n_p + n_n}\right) = \frac{1}{1 + \left(1 + x_e^{\gamma 1/3}\right)^3}, \quad x_e^Y = \frac{n_e}{n_e + n_\mu - n_Y^{ch}},$$

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Direct Urca process: hyperonic stars

Effect of L:

▶ small $L \rightarrow$ larger n_{DU} because Y_P becomes smaller

・ロット (雪) (日) (日)

ъ

- presence of hyperons \rightarrow
 - affects n_{DU} if $L \lesssim 70$ MeV
 - reduces M_{DU}
- attractive $U_{\Sigma^-} \rightarrow \text{decreases } n_{DU}$

Particle fractions

(Malik 2022 arxiv:2205.15843)

(2)

- The median and 90% CI for the particle fractions X_i
- Presence of hyperons affects fraction of protons!

Hyperon species inside NS Effect of U_{Σ}

DDME2, DD2: RMF with density dependent couplings

- no nucleonic eletron DU
- ▶ Ξ^- does not set in for $-10 < U_{\Sigma} < +30$ MeV
- $\Sigma^- \to \Lambda(R = 0.21)$: opens in stars with 1.1 M_{\odot} (\mathbb{R}) (\mathbb{R})

Is SAX J1808-3658 an hyperonic star?

DDME2 (Lalazissis 05)

DDME2 EoS: SAX J1808.4-3658 is compatible with a NS

with no/small amount of accreted matter in the envelope

・ロット (雪) (日) (日)

-

EoS with hyperons

Direct Urca and hyperons

Direct Urca process is sensitive

- ► the slope L: DU is affected by hyperons if L ≤ 70 MeV
- the value of U_{Σ} : n_{DU} larger for more repulsive U_{Σ}
- Density dependent RMF models: DD2 and DDME2
 - only hyperonic direct Urca processes
 - when hyperonic channels open cooling is faster

(日)(1)(1

► SAX J1808.4-3658:

is an hiperonic star with $M\gtrsim 1.3M_{\odot}$

Temperature for fixed entropy per baryon

 $s_B = 1, 2, 4, \beta$ -equilibrium (Fortin PASA 2018)

- As soon as hyperons set in the temperature drops

• at large ρ , $T_{DD2Y} < T_{SFHOY}$

Hyperonic EoS at finite T

Model dependence: SFHo softer EoS than DD2

- SFHoY has smaller hyperon fractions, smaller effect on temperature
- Possible consequences
 - different proto-neutron star evolution
 - different impact of hyperonic degrees of freedom on neutron star merger dynamics

. ・ ・ ・ ・

Hyperons in clusterized matter

Cold catalyzed matter

(Chamel and Haensel, Living Reviews 2008)

- Surface on NS: p = 0; ⁵⁶Fe
- a bit deeper: nuclei embedded in a electron sea
- ρ > ρ_{drip}: pasta phases in a background gas of neutrons and electrons
- Above cristalization temperature: the crust melts and light clusters contribute to the equilibrium
- Light clusters play a role: supernova matter properties, neutron star cooling, accreting systems, and binary mergers. (Arcones et al PRC78 (2008), Heckel et al PRC80 2009, Lalit et al EPJA 55:10 2019

Effect of T on pasta/crust extension

 β -equilibrium matter, no light clusters

The critical temperature for heavy clusters: T_{crit} is model, dependent but below 10 MeV

Light clusters in neutron stars

Supernova EoS with clusters:

quantum statistical approach (QS): quantum correlations with the medium, takes into account the excited states and temperature effect. But, the mass shifts available only for a few nuclear species and a limited density domain. Can be implemented only with approximations (Typel et al 2010)

RMF approach with light clusters

- considered as new degrees of freedom.
- characterized by a density, and possibly temperature, dependent effective mass,
- interact with the medium via meson couplings.
- In-medium effects are incorporated via the meson couplings, the effective mass shift, or both.

· 《曰》《國》《臣》《臣》 臣 - 원��

Constraints are needed to fix the couplings!

Constraining light clusters

- Cluster formation has been measured in heavy ion collisions (Qin et al PRL 108 (2012), Hagel et al PRL108,062702): equilibrium constants, Mott points and medium cluster binding energies
- Cluster formation in Supernova EOS constrained with equilibrium constants from HIC was studied in (Hempel et al PRC91, 045805 (2015))
 - the SN EoS should incorporate: mean-field interactions of nucleons, inclusion of all relevant light clusters, and a suppression mechanism of clusters at high densities

. ・ ・ ・ ・

EOS

RMF Lagrangian for stellar matter

Lagrangian density: $\mathcal{L} = \mathcal{L}_N + \mathcal{L}_c + \mathcal{L}_m + L_e$

nucleons, tritium, helion

$$\mathcal{L}_{j} = \bar{\psi}_{j} \left[\gamma_{\mu} i D_{j}^{\mu} - M_{j}^{*} \right] \psi_{j} \qquad i = p, n, t, 3he$$

alphas, deuterons

$$\begin{split} \mathcal{L}_{\alpha} &= \frac{1}{2} (i D^{\mu}_{\alpha} \phi_{\alpha})^* (i D_{\mu \alpha} \phi_{\alpha}) - \frac{1}{2} \phi^*_{\alpha} M^2_{\alpha} \phi_{\alpha}, \\ \mathcal{L}_{d} &= \frac{1}{4} (i D^{\mu}_{d} \phi^{\nu}_{d} - i D^{\nu}_{d} \phi^{\mu}_{d})^* (i D_{d\mu} \phi_{d\nu} - i D_{d\nu} \phi_{d\mu}) - \frac{1}{2} \phi^{\mu *}_{d} M^2_{d} \phi_{d\mu}, \end{split}$$

$$\begin{split} iD_j^{\mu} &= i\partial^{\mu} - g_{\nu j}\omega^{\mu} - \frac{g_{\rho j}}{2}\tau \cdot \mathbf{b}^{\mu}, \\ M_j^* &= m^* = m - g_s\phi_0, \quad j = p, n \\ M_j^* &= M_j - g_{sj}\phi_0 - \mathbf{B}_j, \quad j = t, h, d, \alpha \end{split}$$

couplings: constrained by HIC data ou first principle calculations

Mass shift in clusters - g_{sj}

▶ Binding energy for each cluster: $B_j = A_j m^* - M_j^*$

• $m^* = m - g_s \phi_0$, nucleon effective mass

► $M_j^* = A_j m - g_{sj} \phi_0 - (B_j^0 + \delta B_j)$, cluster effective mass

- *g_{sj}* = *x_{sj}A_jg_s*, the cluster- scalar meson coupling
 ▶ needs to be determined from experiments
- δB_j: the energy states occupied by the gas are excluded (double counting avoided!)

· ・ ・ ・ ・

Equilibrium constants: model versus experimental data System ¹³⁶Xe+¹²⁴Sn (INDRA - GANIL, Bougault *et al* JPG 47 (2020) 025103

Chemical equilibrium constants :

- $K_c[i] = \rho_i / (\rho_p^{Z_i} \rho_n^{N_i})$
- chemical equilibrium constants for homogeneous matter with five light clusters
- calculated at the average value of (*T*, ρ_{exp}, *y*_{pg,exp})
- ► cluster-meson scalar coupling constants $g_{s_i} = x_{s_i}A_ig_s$, with $x_{s_i} = 0.92 \pm 0.02$
- global proton fraction: color code

Hyperon effect of light cluster and unbound nucleons abundances

- Unbound nucleon and light cluster fractions with hyperons (thick lines) and without hyperons (thin lines)
- Hyperons: smaller fraction of unbound nucleons and larger fraction of light clusters

・ コット (雪) (小田) (コット 日)

Hyperons: larger dissolution density

Hyperon effect of light cluster abundances

Total mass fraction of the light clusters versus density (T = 50 MeV)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

dissolution density of the clusters versus temperature

Light hyperclusters

- Mass fractions of the unbound protons and neutrons A, D and E, light clusters and light hypernuclei
- Hypernuclei may be more abundant than α-particles or other heavier clusters, for small Y_Q

Hyperons and hypernuclei in NS

The presence of hyperons

- shifts the dissolution of clusters to larger densities
- increases the amount of clusters
- smaller charge fractions \rightarrow larger effects
- the dissolution of the less-abundant clusters occurs at larger densities due to smaller Pauli-blocking effects.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Hyperons in neutron stars: conclusions

Presence in the core:

- more information on hypernuclei: with \(\mathcal{E}\), \(\sum_{t}\), with double hyperons ...
- more information on phase shifts including hyperons
- for microscopic calculations: information on YY, YYY, NYY

Presence of light clusters in hot matter

- in medium mass shifts
- Mott densities

Thank you !

· ・ ・ ・ ・ ・ ・ ・ ・