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Experimental Particle Physics - the Journey
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Detector & Analysis Chain

B Collider-based particle physics:
complicated analysis chain
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Analysis in CMS

Algorithms
to ' Analysis

reconstruct software
data

Simulation

Centra | Hundreds of physicists analyze
the data with different goals

at the same time
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Analysis: A multi-step Process
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* Analysis is a conversation with data - Interactivity is
~4 x year
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Big Data

- New toolkits and systems collectively called “Big Data”
technologies have emerged to support the analysis of PB and EB

datasets in industry.

« Our goals in applying these
technologies to the HEP analysis

challenge:
* Reduce Time to Insight

- Educate our graduate students and [ o
post docs to use industry-based technologies P
* Improves chances on the job market outside

academia

« Increases the attractiveness of our field
» Be part of an even larger community

N. De Filippis
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Bridging the Gap

Physics Analysis is typically done with the ROOT Framework which uses
physics data that are saved in ROOT format files. At CERN these files are
stored within the EOS Storage Service.
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Worldwide LHC Computing Grid

1. access data 2. read format 3. visualize
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CMS Data Reduction and Analysis Facility

Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

Ntupling

@ ~4 x year

Group ntuples

: @ ~1 x week
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Group analysis ntuples

CMS Data
Reduction
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machine learning
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plots and tables
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CERN openlab / Intel project

Apache Spark is a unified analytics engine
for large-scale data processing with built-in
modules for SQL, streaming, machine
learning, and graph processing. Spark can
run on Apache Hadoop, Apache Mesos,
Kubernetes, on its own, in the cloud and
for diverse data sources.

Demonstrate reduction capabilities
producing analysis ntuples using Apache
Spark

Demonstrator’s goal: data reduction
of 1 PB input data in 5 hours



Milestones and Achievements

- Two important data engineering challenges were solved:

-~
1. Read files in ROOT Format using Spark ﬁiﬁJ@%@

0 ‘ accessed by

«  This enabled us to produce, scale up, and optimize caa o
Physics Analysis Workloads with data input up to 1 PB. % )
EOS

Storage
Service

2. Access files stored in EOS directly from Hadoop/Spark

N. De Filippis
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Scalability Tests

Test Workload Architecture and File-Task Mapping

IT Hadoop and Spark Service (analytix)
. . . . {Di tem I jant
The data processing job of this project was vass Calculation, Code} @
developed in Scala by CMS members.
« Performs event selection (i.e. Data Reduction)

« Uses the filtered events to compute the dimuon
invariant mass

Driver

« On asingle thread/core and one single file as
input, the workload reads one branch and
calculates the dimuon invariant mass in
approximately 10 mins for a 4GB file

Executor

Storage

Eos | ROOT AN ROOT AN
}lm;, file file | ile
Service
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Scalability Tests: Technology

Apache Spark used:
« Hadoop YARN cluster
« Kubernetes and Openstack (cloud resources)

Services/Tools Used:

« EOS Public, CERN open data

« Hadoop-XRootD Connector (allows Spark to access the CERN EQOS storage system)
« spark-root (Spark data source for ROOT format)

« sparkMeasure (spark instrumentation)

« Spark on Kubernetes Service

Issues tackled:

« Network bottleneck at scale: “readAhead” buffer size configuration of the Hadoop-XRtooD
connector

« Running tests on a shared clusters and share infrastructure in IT datacenter

N. De Filippis 12



Hadoop and Spark Clusters at CERN

- Clusters:
«  YARN/Hadoop
«  Spark on Kubernetes

- Hardware: Intel based servers, continuous refresh and capacity expansion

Accelerator logging | Hadoop - YARN - 30 nodes
(part of LHC (Cores - 800, Mem - 13 TB, Storage — 7.5 PB)
infrastructure)

General Purpose Hadoop - YARN, 65 nodes
(Cores — 1.3k, Mem — 20 TB, Storage — 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem — 2 TB
Storage: remote HDFS or EOS (for physics data)
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Scalability Tests — Optimization Results

Total Time Spent (Sum | o (Compared
Over al Executors) to Execution

Time)

XRootD connector bytes read / sec

Total ~3000 - 3500 hours 1

Execution

Time < ot A |
CPU ~1200 hours 40% W;;m*j\:“' “‘W M\AM..,W\A:\;M «;:::u}.‘;x' E»w
Time 5 . _ ~ } ‘ -"m*«v\ﬁvf;@ |

EOSRead  ~1200 - 1800 hours, 40-50% : > R RN ARASA

Time depending on e

readAhead size

Garb ~200 h -89
a1hase ours et + Read Throughput in GB/s
Collection
Time * Measure throughout during job execution
. Key workload metrics and time spent, for 1 PB of input with, 100 Spark executors,

measured with Spark custom instrumentation each using 8 logical cores.

for 1 PB of input with 804 logical cores, 8
logical cores per Spark executor

N. De Filippis 14



Scalability Tests - Results

250

»  Performance and Scalability of the
tests for different input size in
minutes, 800 logical cores,and 8
logical cores per Spark executor

Input Data Time for EOS Public
22 TB 7.3 mins 7,3 11,9 - I

0 — I

Data reduction job, run ti

o
o

ul
o

00

Job run time (minutes),

(O
o

44 TB 11.9 mins 22 TB 4478 | oA ulBsize 220 T8 PB

110 TB 27 mins (2)

220 TB 59 mins (+5) * |s it possible to reduce 1 PB in 5

- 228 mins (£10) hours (original project milestone)?
(~3.8 hours) YES

* |t was even dropped to 4 hours in our
latest tests
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Machine Learning Use Case
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Deep Learning Pipeline for Physics Data

- R&D to improve the quality of filtering systems
- Develop a “Deep Learning classifier” to be used by the filtering system

«  Goal: Reduce false positives - do not store nor process uninteresting events

“Topology classification with deep learning to improve real-time event selection at the
LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

Particle
1 > ’ Classifier
1
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CMS Experiment at LHC , CERN
CM‘S Data recorded: Wed Jul 8 19:26:24 2015 CEST
\ Run/Event: 251244 / 83494441
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Engineering Efforts to Enable Effective ML

- From "Hidden Technical Debt in Machine Learning
Systems”, D. Sculley at al. (Google), paper at NIPS 2015

Machine -
Resource Monitoring
_ Management
Configuration Data Collection Serving
Infrastructure
Analysis Tools
Feature Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.
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Analytics Platform at CERN

-
Integrating new “Big Data” Jupyter
components with existing S’
infrastructure:

» Software distribution
» Data platforms

S APACHE "\Z[
i )
%'ﬂ Experiments storage
I
\ S
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"Sﬁ'lnadamp HDFS
HIDES]
\ S

HEP software ( 1
@ CERNBox Personal storage
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Analytics with SWAN

FILE EDT VIEW INSERT CELL KERNEL HELP Tusted| | Python2 O @

B 4+ 3 @ B 4+ ¥ M B C Code vg!ﬁ
Do the heavylifting in spark and collect aggregated view to panda DF

In [11]: df_loadAvg_pandas = spark.sql("SELECT submitter_host, \
avg(body.LoadAvg) as avg, \
hour(from_unixtime(timestamp / 1000, 'yyyy-MM-dd HH:mm:ss')) as hr \
FROM loadAvg \
WHERE submitter_hostgroup = ‘hadoop/itdb/datanode’ \
AND dayofmonth(from_unixtime(timestamp / 108@, 'yyyy-MM-dd HH:mm:ss')) = 15 \

GROUP BY hour(from_unixtime(timestamp / 1000, 'yyyy-MM-dd HH:mm:ss')), submitter_host™)\

.toPandas()
90 EXECUTORS | 180 CORES 1 COMPLETED
Job ID Job Name Status Stages Tasks Submission Time Duration
>3 topanas 2 it ago s

Visualize with seaborn

In [19]: # heatmap of service availability
plt.figure(figsize=(10, 6))
ax = sns.heatmap(df_loadAvg_pandas.pivot(index="submitter_host’, columns="hr', values="avg'), cmap="Blues")
ax.set_title("Heatmap of loadAvg")

Out[19]: Text(®.5,1,u'Heatmap of loadAvg')

Heatmap of loadAvg

B

itrac1501.cern.ch
itrac1502.cern.ch
itrac1503.cern.ch
itrac1504.cern.ch
itrac1505.cern.ch

. Visualizations

itrac1507.cern.ch 6

litrac1506.cern.ch

submitter_host

itrac1508.cern.ch
itrac1509.cern.ch

itrac1510.cern.ch

: All the required tools,
eszens | — 0 DEE software and data
' available in a single
window!
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Extending Spark to Read Physics Data

Physics data is stored in EOS system, accessible with
xrootd protocol: extended HDFS APls

Stored in ROOT format: developed a Spark Datasource

C++ E Java

Currently: 300 PBs o5 :
Growing >50 PB/year [Resn 4 L

XRootD \
Client g INI g 2 XRootD

thL/ - \

https://github.com/cerndb/hadoop-xrootd - t I .'.-":l. CERN
(inte ) 1= openlab

https://github.com/diana-hep/spark-root
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https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

Deep Learning Pipeline for Physics Data

Read physics Prepare 1. Specify model Train the best
data and input for topology model
feature Deep 2. Tune model
engineering Learning topology on

network small dataset

ST

. Built with Apache Spark + Analytics Zoo + Python Notebooks

N. De Filippis 22



The Dataset

. Software simulators generate events (W+jets, tt, QCD)
and calculate the detector response

- HEP knowledge to implement trigger selection:
« all particles are then ranked in decreasing order of p;
« the isolated lepton is the first en-try of the list of particles

- together with the isolated lepton, the first 450 charged
particles, the first 150 photons, and the first 200 neutral
hadrons, for a total of 801 particles with 19 features each

. Every eventis a 801x19 matrix: for every particle
momentum, position, energy, charge and particle type
are given

features = |
'"Energy', 'Px', 'Py', 'Pz', 'Pt', 'Eta', 'Phi’,
'vixX', 'vtxy', 'vitxZ', 'ChPFIso', 'GammaPFIso', 'NeuPFIso',
'isChHad', 'isNeuHad', 'isGamma', 'isEle', 'isMu', 'Charge’

]
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Data Ingestion

- Read input files (4.5 TB) from ROOT format
-  Compute physics-motivated features
- Store to parquet format

54 M events
4 5TB

+
HLF and LLF
dataframes

Physics data
storage

&% 7 B
/'//// parquet Sfc?rcfd sn HDFS
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Features Engineering

From the 19 (low-level) features (LLF) recorded in the
experiment:

. 14 are calculated based on domain specific knowledge: these are called
High Level Features (HLF)

LLF and HLF datasets are saved in Apache Parquet format

«  the amount of training data is reduced at this point from the original 4.5 TB
of ROOT files to 950 GB of snappy-compressed Parquet files.

Order the sequence of particles to be fed to a sequence
based classifier

. TEe final sequence is ordered using custom Python code implementing
physics

The datasets, containing HLF and LLF features and labels,
are split into training and test datasets (80% and 20%
respectively) and saved in two separate Parquet files

N. De Filippis
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Models Investigated

1. Fully connected feed-forward DNN with
High Level Features (“HLF classifier”)

2. DNN with a recursive layer (based on
GRUs) and used a “LLF/Particle Sequence
classifier” with 801 particles

Complexity
Performance

3. Combination of (1) + (2): “inclusive
classifier”

26



Hyper-Parameter Tuning— DNN

Once the network topology is chosen, hyper-parameter
tuning is done with scikit-learn + Keras and parallelized with
Spark

the Area Under the ROC curve (AUC), as the performance
metric to compare different classifiers

fthe feed-forward DNN tuning done by changing the number
of layers and units per layer, the activation function, the
optimizer, etc.

Test =.I>

100k events

odel #2 j =>E;e8t Model J
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Analytics Zoo & BigDL tools for
distributed training

Analytics Zoo is a platform for unified ANALYTICS

analytics and Al on Apache Spark

Ieveraglng BigDL / Tensorflow
For service developers: integration with the
existing distributed and scalable analytics
infrastructure (hardware, data access, data

processing, configuration and operations)

. L]
For users: Keras APIs to run user models, Blg I

integration with Spark data structures and
pipelines

BigDL is a distributed deep learning
framework for Apache Spark

N. De Filippis

28



Performance and Scalability of Analytics Zoo & BigDL

Analytics Zoo & BigDL scales very well in the

ranges tested

OCI: BigDL Parallelization efficiency

201 -@- Actual parallelization efficiency 7
—-== Perfect parallelization efficiency ol
_.18 ol
b -
v ’/
n 16 - Rt
E ',I,/
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E ”” Cd
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3 14 4 "/’
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Number of parallel cores
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Results

trained models with Analytics Zoo
and BigDL

results using the test dataset
evaluated

each of the models returns as output
the probability that an input event is
associated with a given topology:

Yacps yW+jets Or Yi.

this can be used to define classifer,
for example, by applying a threshold
requirement on y;; or y,, to define a W
or a tt classifier

performance of classifiers by
comparing the ROC (receiver
operating characteristic curve) curves
and AUC

N. De Filippis 30
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Signal Efficiency (TPR)
o
>

0.2

tt selector

P === HLF classifier (AUC) = 0.9821
//’ - Particle-sequence classifier (AUC) = 0.9906
,/’ = |nclusive classifier (AUC) = 0.9929
0.0 ¥
0.0 0.2 0.4 0.6 0.8 1.0

Background Contamination (FPR)

the 3 models perfomed very well
with comparable result (slightly
better for the Particle Sequence
classifier)

smooth training
convergence for the
HLF classifier with the”
distributed training °
tools, reproducing
original results

HLF classifier loss




TensorFlow on Kubernetes

- Additional results using TensorFlow 2.0 on Kubernetes

. CERN Cloud on Openstack
. TF.distribute Multi Worker Strategy on K8S: https://github.com/cerndb/tf-spawner

. Data transformed from Parquet to TFRecord using Spark, then fed to TF.Data

350 A

«. Distributed training with TF 2.0 o024
N
N
— . - 0.22
T N
— \ wv
= . _m 0205
£ 250 - N T o
a . O 0183
g \\ ‘‘‘‘ —
L ’X’ o
5 200 - - 0.16 %5
5 o s 0.14 ~
150 1 .
bt -0.12
)
1001 : : —L 0,10
24 48 72 9

N. De Filippis

Number of CPU cores (Broadwell)

31


https://github.com/cerndb/tf-spawner

Machine Learning with Spark and Keras

. B |
Data and J@r Keras Blgm] Ten:(EFiow
models » ¢ » »
N M » 2 =

from

Researchers 366" K Spr K Spr
Input: .
Feature H Distributed
yperparameter _ :
labeled engineering  qptimization model training Output: particle
data and DL at scale (Random/Grid selector model
models
search)

N. De Filippis
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Conclusions

Spark and “Big Data”-based analysis platforms can improve
High Energy Physics data pipelines

« Industry-standard APls

« Run natively on “data lakes™ and cloud

«  Profit from large communities in industry and open source

Two use cases developed

« CMS Data reduction at scale with Apache Spark

« Deep learning pipeline with Spark + BigDL and TensorFLow

Analytics platform at CERN

« Open for access to CERN community, notably users in Physics,
Beams and Accelerators, IT.

References:
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Model Development — DNN

- Model is instantiated with the Keras-
compatible API provided by Analytics Zoo

In [7]: # Create keras like zoo model.
# Only need to change package name from keras to zoo.pipeline.api.keras

from zoo.pipeline.api.keras.optimizers import Adam
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import Dense, Activation

model = Sequential()

model.add(Dense (50, input shape=(14,), activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(10, activation='relu'))

model.add(Dense(3, activation='softmax'))

creating: createZooKerasSequential
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense
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Model Development — GRU+HLF

A more complex topology for the network

In [6]: from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import *
from zoo.pipeline.api.keras.layers.torch import Select
from zoo.pipeline.api.keras.layers.normalization import BatchNormalization
from zoo.pipeline.api.keras.layers.recurrent import GRU
from zoo.pipeline.api.keras.engine.topology import Merge

PFcand 1

## GRU branch
gruBranch = Sequential() \
.add(Masking(©.8, input_shape=(861, 19))) \

-

.add (GRU( Masking

output_dim=58,

return_sequences=True, l

activation="tanh'
NN\ GRU (50) ’[ High-level features (14) ]
.add(Select(1, -1))

## HLF branch
hlfBranch = Sequential() \
.add(Dropout (0.0, input_shape=(14,)))

## Concatenate the branches
branches = Merge(layers=[gruBranch, hlfBranch], mode='concat")

Concatenate (64)
Dense (25)
Output (3)

## Create the model

model = Sequential() \
.add(branches) \
.add(BatchNormalization()) \
.add(Dense(3, activation='softmax"'))
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Distributed Training

Instantiate the estimator using Analytics Zoo / BigDL

# Create SparkML compatible estimator for deep learning training

from bigdl.optim.optimizer import EveryEpoch, Loss, TrainSummary, ValidationSummary

from zoo.pipeline.nnframes import *
from zoo.pipeline.api.keras.objectives import CategoricalCrossEntropy

estimator = NNEstimator(model, CategoricalCrossEntropy())\

.setOptimMethod(Adam()) \

.setBatchSize(BDLbatch) \

.setMaxEpoch(numEpochs) \

.setFeaturesCol("HLF_input™) \

.setlLabelCol(“encoded_label™) \

.setValidation(trigger=EveryEpoch() , val_df=testDF,

val_method=[Loss(CategoricalCrossEntropy())], batch_size=BDLbatch)

HLF classifier loss

The actual training is distributed to Spark executors i
%ktime :
trained_model = estimator.fit(trainDF)

Storing the model for later use :

modelDir = logDir + '/nnmodels/HLFClassifier’ 04

trained_model.save(modelDir)

0 100 200 300 400
Iteration
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