The spread of information on social media

Lília Perfeito, Pedro Duarte, Joana Gonçalves-Sá

Social Physics and Complexity @ LIP

FARE Fake News and Real People: Using big data to understand human behaviour

About me

2004-2008	2008-2012	2012-2018	2019-2020
PhD in Biology	Collaboration between Institute for genetics and Institute for theoretical physics	Principal Investigator	Data Science and Policy
The distribution of fitness effects of spontaneous mutations in bacteria	Empirical molecular fitness landscapes	Can we predict evolution?	
GULBENKIAN SCIENCE	University of Cologne		N D VA SCHOOL OF BUSINESS & ECONOMICS

Online vs. Offline Patterns Emergency Now-casting Antibiotic Over-prescription Google Trends SNS24 Twitter ER acceptance /times SPMS e-prescriptions

Math Modelling ML Epidemiology

Political Decisions Gender Differences Agenda Setting Voting vs. Discourse Media records Twitter Facebook Parliament data NLP Networks Math Modelling Complex Systems

Cognitive Biases Attitudes Towards Science Tracking Anxiety Large scale surveys Behavioral experiments Twitter Facebook Networks Math Modelling Psychology Information

https://socialcomplexity.eu/

The spread of information on social media: a model based on evolutionary principles

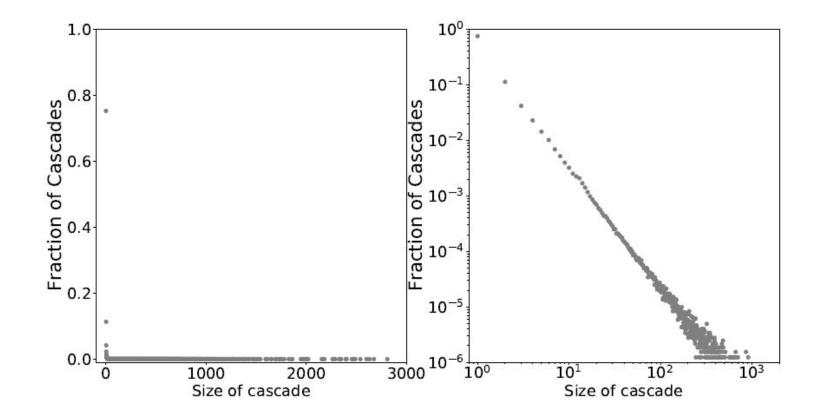
Lília Perfeito, Pedro Duarte, Joana Gonçalves-Sá

Social Physics and Complexity @ LIP

FARE Fake News and Real People: Using big data to understand human behaviour

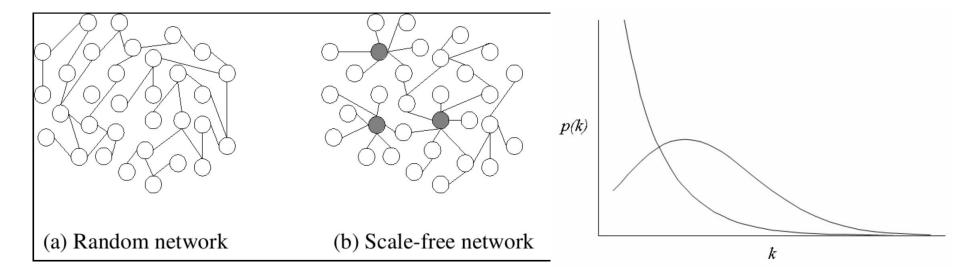
Image credit: all-free-download.com

Social Physics & Complexity



What are the main forces behind the success/failure of memes?

H1: The social network

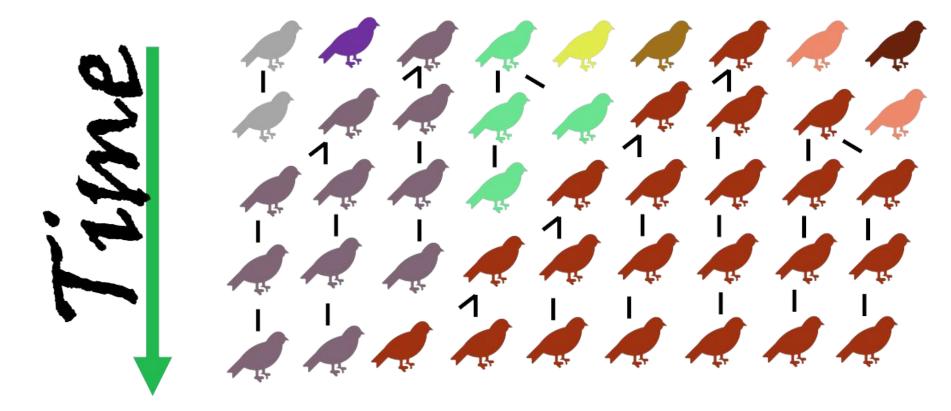


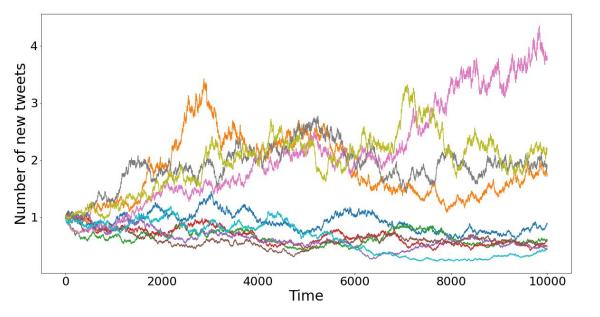
H1: The social network



Szüle, J., Kondor, D., Dobos, L., Csabai, I., & Vattay, G. (2014). Lost in the city: revisiting Milgram's experiment in the age of social networks. *PloS one*, *9*(11), e111973.

H2: Exponential growth and selection



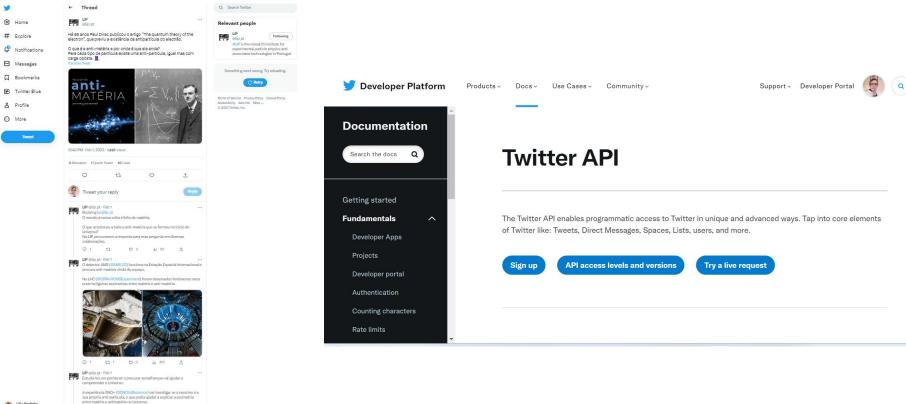


$$\frac{dN}{dt} = x \cdot \epsilon$$
$$\frac{d\log(N)}{dt} = \log(x) + \log(\epsilon)$$

where $log(\epsilon)$ is a Gaussian random variable

Can we tease apart the role of the network and growth? Can we measure selection acting on information?

Social media platforms - Twitter as a research tool



Tweets	+	re-tweets	
--------	---	-----------	--

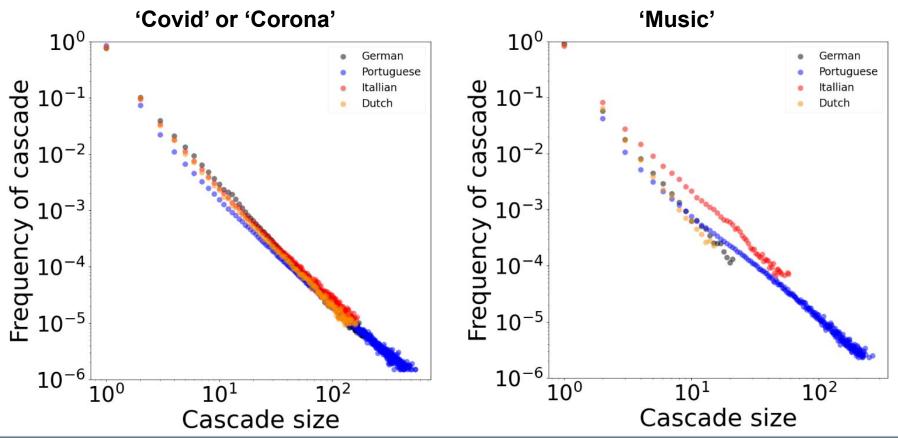
Language	Covid	Music	Film				
Portuguese	66 185 221	24 375 572	2 928 429				
Italian	6 738 712	1 016 834	995 971				
German	13 566 605	447 831	444 034				
Dutch	7 159 327	191 366	186 972				

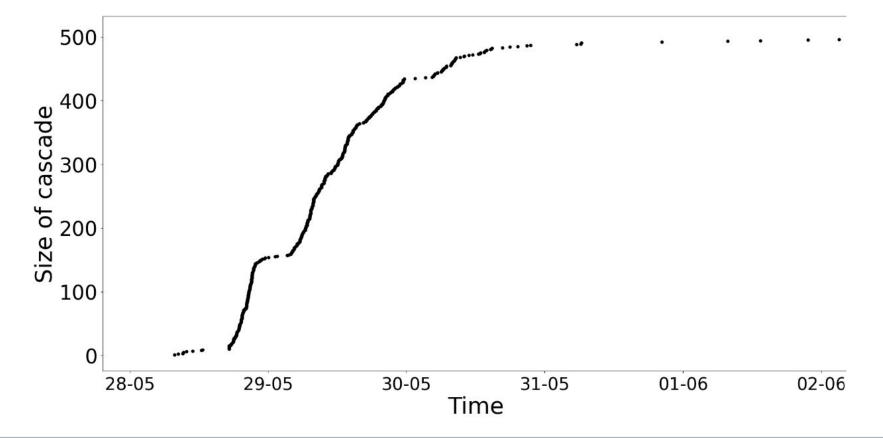
Language	Tweets + re-tweets					
	Covid	Music	Film			
Portuguese	66 185 221	24 375 572	2 928 429			
Italian	6 738 712	1 016 834	995 971			
German	13 566 605	447 831	444 034			
Dutch	7 159 327	191 366	186 972			

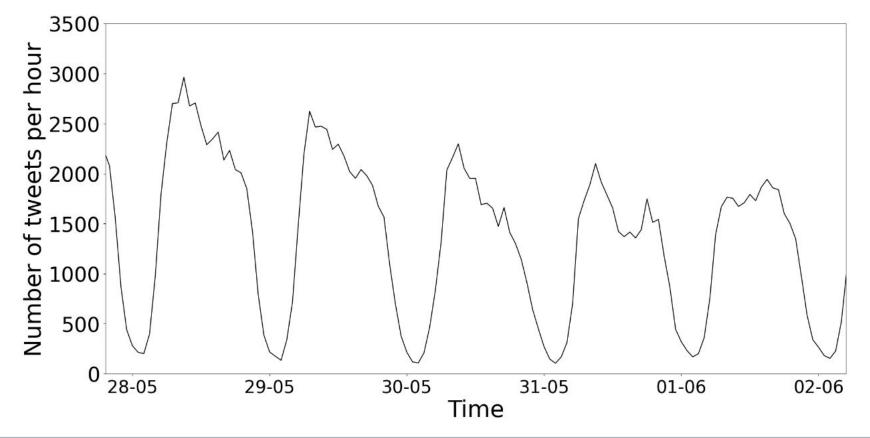
April 2020 to June 2021

Accounts				C	Driginal tweets	al tweets	
Language	Covid	Music	Film	Covid	Music	Film	
Portuguese	6 914 262	3 905 141	2 928 429	20 595 795	13 251 392	7 888 742	
Italian	728 279	728 279	728 279	2 719 486	490 764	638 865	
German	808 096	154 463	170 588	5 392 367	324 803	297 891	
Dutch	461 353	69 203	95 396	3 293 620	138 851	115 969	

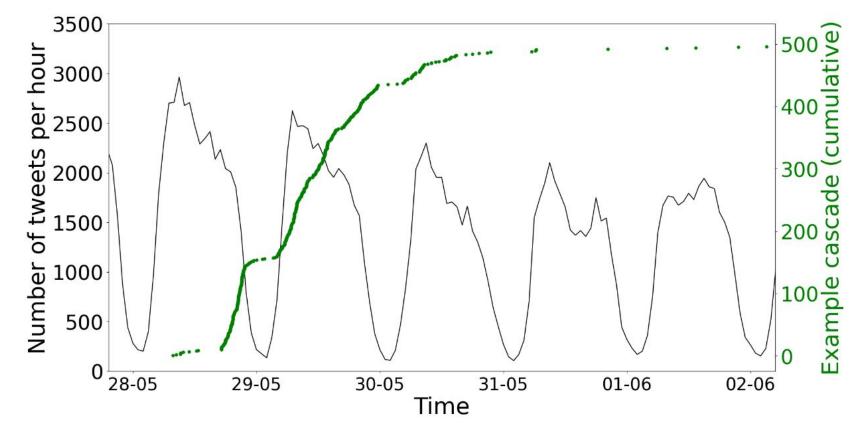
Cascade: Set of identical tweets, probably originating in a single seeding event.

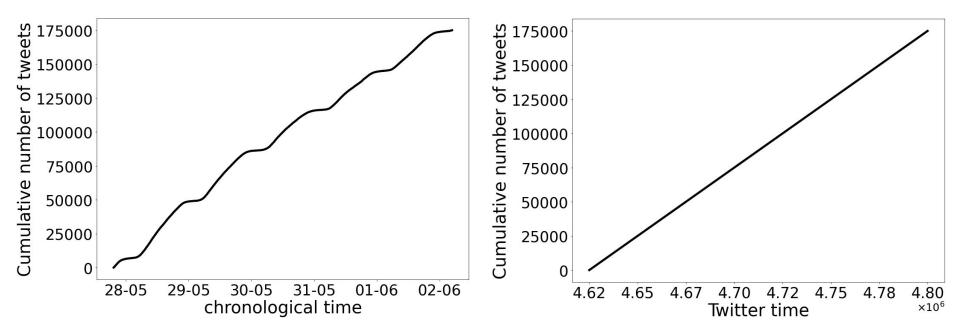


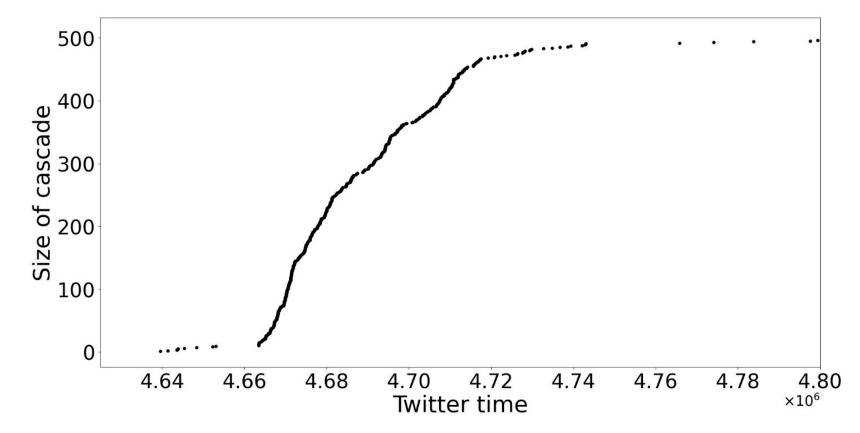


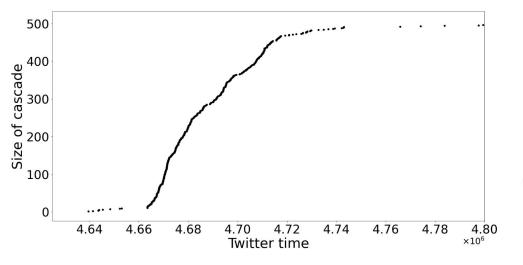


Twitter time

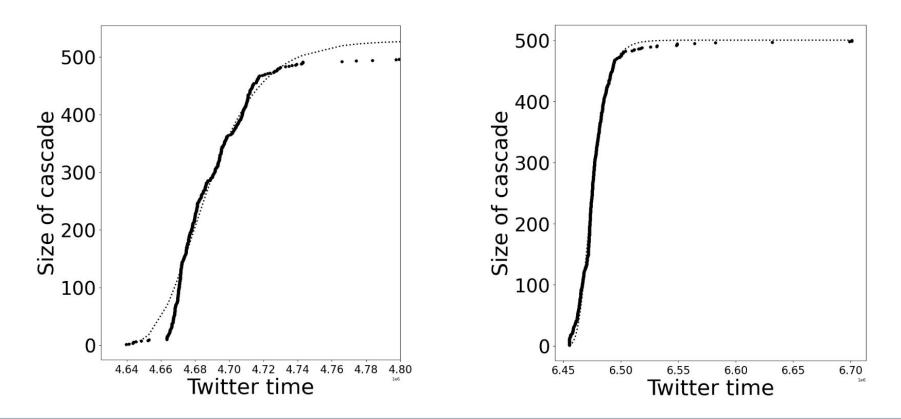








$$\frac{dN}{dt} = a \cdot e^{-g \cdot t}$$
$$N(t) = N(0) \cdot e^{a/g} e^{-a \cdot e^{-g \cdot t}/g}$$



If we let all cascades grow to maximum size, (i.e., $t \rightarrow +\infty$), then:

$$\frac{dN}{dt} = a \cdot e^{-g \cdot t}$$
$$N(t) = N(0) \cdot e^{a/g} e^{-a \cdot e^{-g \cdot t}/g}$$
$$\lim_{t \to \infty} N(t) = e^{a/g}$$

If we let all cascades grow to maximum size, (i.e., $t \rightarrow +\infty$), then:

$$\frac{dN}{dt} = a \cdot e^{-g \cdot t}$$

$$N(t) = N(0) \cdot e^{a/g} e^{-a \cdot e^{-g \cdot t}/g}$$

$$\lim_{t \to \infty} N(t) = e^{a/g}$$

Fitness

If we let all cascades grow to maximum size, (i.e., $t \rightarrow +\infty$), then:

$$\frac{dN}{dt} = a \cdot e^{-g \cdot t}$$

$$N(t) = N(0) \cdot e^{a/g} e^{-a \cdot e^{-g \cdot t}/g}$$

$$\lim_{t \to \infty} N(t) = e^{a/g}$$

What is the distribution of cascade **sizes** (**f**(**N**)), given a certain distribution of **fitnesses** (**g**(ω))?

$$f(N) = \frac{1}{N} \cdot g(\log N).$$

Fitness, ω

3-parameter model: The size distribution

If we let all cascades grow to maximum size, (i.e., $t \rightarrow +\infty$), then:

 $\frac{dN}{dt} = a \cdot e^{-g \cdot t}$ $N(t) = N(0) \cdot e^{a/g} e^{-a \cdot e^{-g \cdot t}/g}$ $\lim_{t \to \infty} N(t) = e^{a/g}$

Fitness, ω

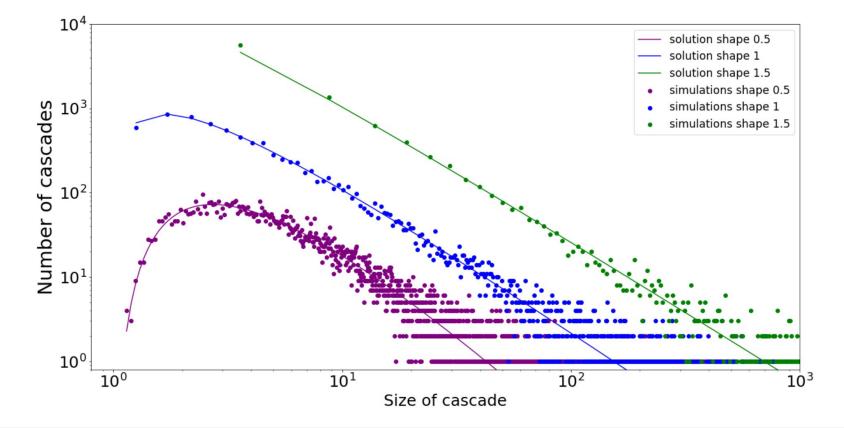
What is the distribution of cascade **sizes** (**f**(**N**)), given a certain distribution of **fitnesses** (**g**(**ω**))?

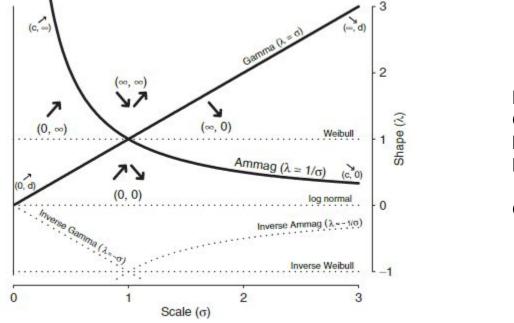
$$f(N) = \frac{1}{N} \cdot g(\log N).$$

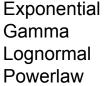
Example: g(ω) is exponential

$$g(\omega) = \lambda \cdot e^{-\lambda \cdot \omega}$$
$$f(N) = \frac{\lambda \cdot e^{-\lambda \cdot \log(N)}}{N}$$
$$f(N) = \lambda \cdot N^{-\lambda - 1}$$

3-parameter model: The size distribution



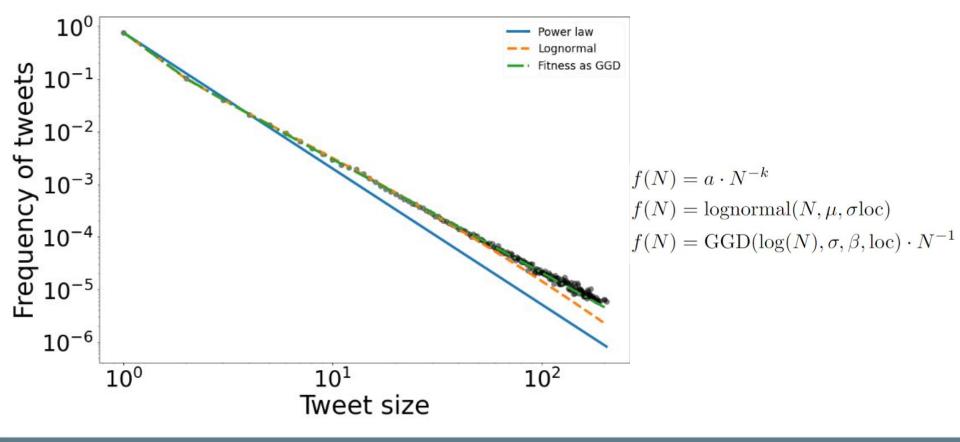




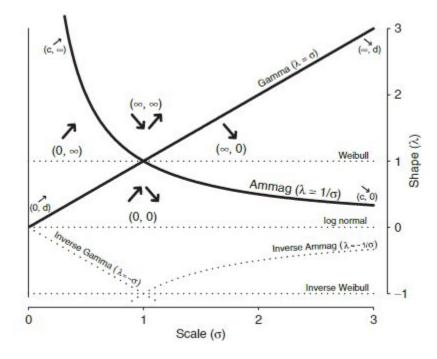
Generalized Gamma

Cox, C., Chu, H., Schneider, M.F., Munoz, A.: Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in medicine **26**(23), 4352–4374 (2007)

Fitting cascade size distribution



Fitting cascade size distribution



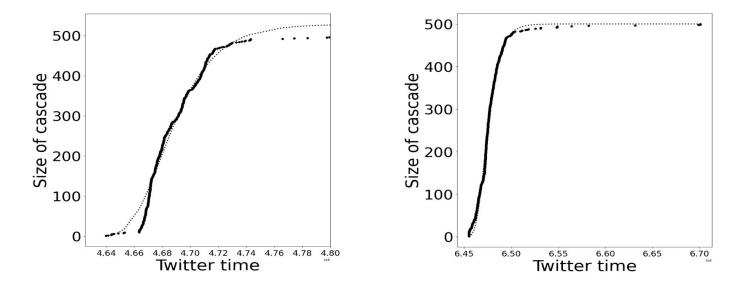
		Parameters of fitness distribution			
Language	Dataset	λ	σ	β	location
Portuguese	Covid	0.23	1.28	20.58	-0.35
	Music	0.29	1.69	19.33	-0.21
	Film	0.29	1.57	18.11	-0.22
Italian	Covid	1.28	1.56	-0.20	-0.27
	Music	1.45	1.79	-0.51	-0.23
	Film	0.36	1.35	11.13	-0.31
German	Covid	1.96	1.53	-1.84	-0.23
	Music	2.22	2.05	-1.57	-0.15
	Film	1.98	2.05	-1.20	-0.17
Dutch	Covid	0.64	1.23	3.51	-0.39
	Music	0.76	1.26	2.80	-0.33
	Film	1.32	1.82	0.46	-0.21

We introduce the concept of twitter time

We show the social network is not necessary to reproduce the cascade size distribution

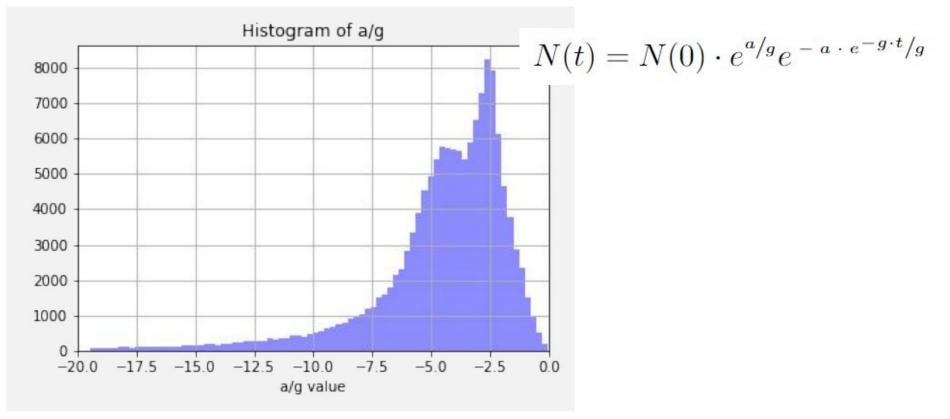
The distribution of fitnesses is well approximated by a generalized Gamma distribution with an exponential-to-heavy tail

Lília Perfeito



Another way to estimate the distribution of fitness parameters: fit each cascade 1 by 1

Time consuming, not applicable to all cases



Histogram of a/g

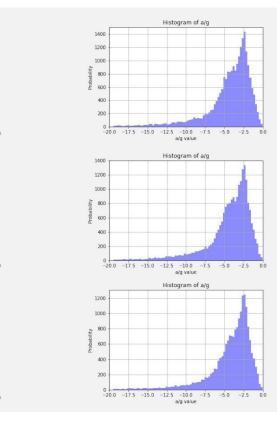
a/g value

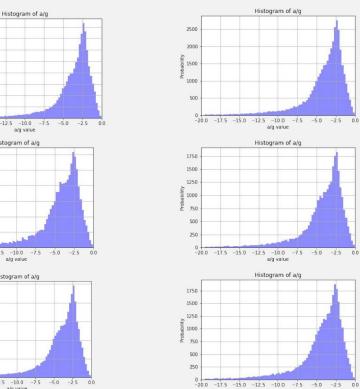
Histogram of a/g

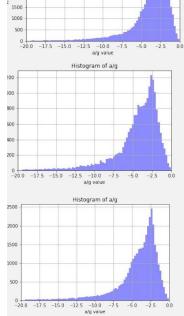
a/g value

Histogram of a/g

a/g value





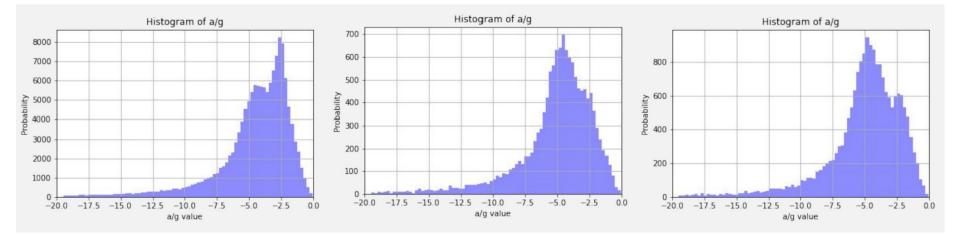


4000

3500

3000 2500

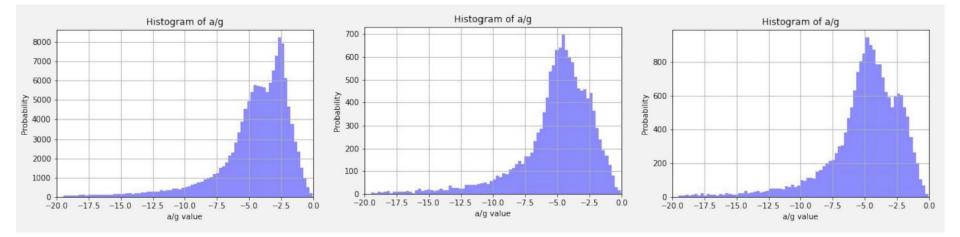
2000



Covid

Film

Music



Covid

Film

Music

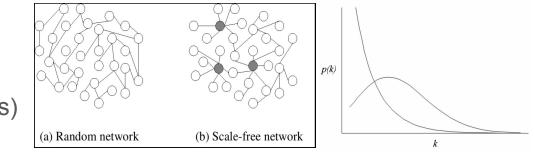
Lília Perfeito

How can we separate them?

Can we tease apart the role of the network and growth? Can we measure selection acting on information?

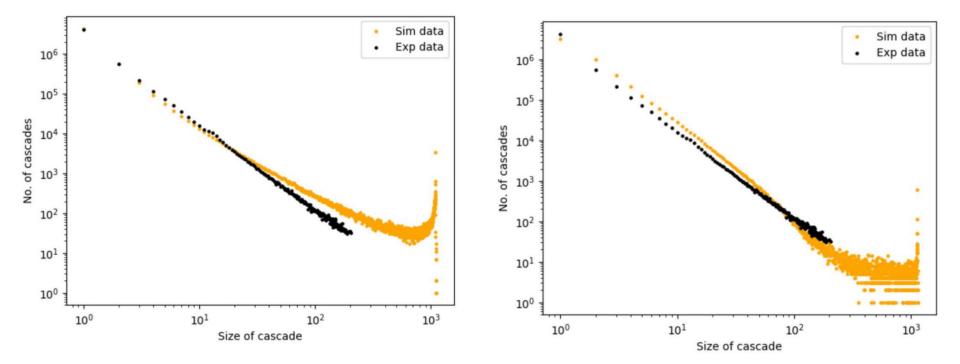
- Q1: Can we tease apart the role of the network and growth?
- A1: The network is not necessary.
- Q1.1: Which one explains more of the variability in the data? Q2: Can we measure selection acting on information? A2: Yes

Simulating tweets spreading on a social network



- 1. Build the network (1000 nodes)
 - a. Uniform/Poisson
 - b. Realistic, ie, powerlaw
- 2. Choose a node at random to post the tweet
- 3. Let tweets spread
 - a. Following $p_i(\text{share}) = k_i \cdot a_c \cdot e^{-g_c \cdot t}$
 - b. Introducing a set of resistant nodes
- 4. Repeat thousands of times, find the simulation parameters that best fit the data (Approximate Bayesian Computation)
- 5. Compare the goodness of fit of the best model without network with the best model with network

First simulation results



- Simple *vs* complex contagion
- Introducing heterogeneity in nodes (personality types)
- True vs misinformation
- ...

