

A Toy Monte Carlo Model for the Simulation of Extensive Proton Air Showers

Astroparticle Multi-Messengers

30th of June, 2022 Prof. Rúben Conceição

David Lopes (93372) and Elia Mazzoletti (104343)

I. Introduction

Matthews Model for Hadronic Cascades

- Inspired by Heitler Model for electromagnetic cascades
- Layers of atmosphere with thickness $\lambda_l \ln(2)$
- After travelling this distance, hadrons interact, producing $N_{ch}\pi^{\pm}$ and $\frac{N_{ch}}{2}\pi^{0}$
- Only π^{\pm} 's give rise to new cascades, while π^{0} 's decay to photons, producing EM cascades
- Energy equally distributed for all the particles in an interaction
- When the energy of π^{\pm} falls below a critical energy, E_c , the π^{\pm} 's decay to muons

I. Introduction

Toy Monte Carlo and its objectives: how the work was divided

- 1. Toy Monte Carlo results under the same conditions of Matthews model and comparison with the analytical expressions from the model
 - > Number of muons and maximum shower depth as a function of energy
 - > Evolution of the number of muons with the multiplicity
 - Evolution of the number of muons with p, the fraction of energy that goes into hadronic showers in each interaction (generalization of Matthews model for $p \neq 2/3$)
- 2. Introduction of stochasticity: relaxing of some conditions of Matthews model
- Multiplicity distribution
- Comparison with Matthews model
 - Evolution of number of muons with primary energy
- Try to understand the correlation between the number of muons and the maximum depth of the shower
 - Study of the correlation of the number of muons and maximum depth of the shower with several parameters

Evolution of the number of muons with primary energy

Matthews model expression: $\ln N_{\mu} = \beta \ln \left(\frac{E_0}{E_c}\right)$, where $\beta = \frac{\ln(N_{ch})}{\ln(1.5N_{ch})}$

Evolution of the maximum shower depth with primary energy

Evolution of the number of muons with multiplicity

Matthews model expression: $\ln N_{\mu} = n_c ln N_{ch} = \ln (E_0/E_c) \frac{\ln(N_{ch})}{\ln(1.5N_{ch})}$

 Evolution of the number of muons with the multiplicity consistent with Matthews model

Evolution of the number of muons with p

(Generalized) Matthews model expression: $\ln N_{\mu} = n_c \ln N_{ch} = \frac{\ln(E_0/E_c)\ln(N_{ch})}{\ln(N_{ch}) - \ln(p)}$

 Evolution of the number of muons with p matches the prediction from the analytical (generalized) Matthews model

Introduction

- Relaxing of equally distributed energy and constant multiplicity along the shower
- In each interaction, energies are distributed uniformly
- Multiplicity adjusted as the distribution of energy occurs
- > π^{\pm}/π^{0} 2:1 ratio cannot always be guaranteed: increase of computational time and decrease of stochasticity
- ▶ Choice: privilege π^{\pm} over π^{0}

Multiplicity Spectrum Histogram

Evolution of the number of muons with primary energy

- Comparison with Matthews model for N_{ch} = 2
- Higher β mainly justified by a π^{\pm}/π^{0} ratio greater than 2:1
- Evolution of number of muons with energy follows the same law as in Matthews model

Sensitivity of N_{muons} and x_{max} to the energy percentage that goes into EM showers

• Expected negative correlation for both N_{muons} and x_{max}

- Very strong negative linear correlation between N_{muons} and EM energy percentage
- Weaker correlation between x_{max} and EM energy percentage

Sensitivity of N_{muons} and x_{max} to multiplicity

- Multiplicity measured as the geometric mean of the number of particles per layer
- Correlation is harder to predict: a greater multiplicity increases the number of subshowers but decreases (on average) the energy per particle

- Strong positive correlation between N_{muons} and multiplicity: despite the decrease of the average energy per particle, the increase in the number of subshowers increases N_{muons}
- No correlation between x_{max} and multiplicity (alone): find another parameter

Sensitivity of N_{muons} and x_{max} to ρ

• Basic idea: the greater the fraction of energy that goes into EM showers in the first levels, the smaller the energy available either to increase N_{muons} or x_{max}

•
$$\rho = \sum_{layer=1}^{4} \frac{E_{em_{layer}}(\%)}{\sqrt{layer}}$$

- Both N_{muons} and x_{max} show a negative correlation with ρ
- Correlation between x_{max} and ρ seems to be stronger than between x_{max} and the percentage of primary energy that goes into EM showers

Correlation between N_{muons} and x_{max}

• Use of EM energy percentage and ρ to study correlation between N_{muons} and x_{max}

- N_{muons} mainly governed by EM energy percentage, as expected
- Weak negative correlation between x_{max} and both EM energy percentage and ρ
- Weak positive correlation between N_{muons} and x_{max}

- Matthews analytical model coincides in several aspects with the Toy Monte Carlo simulation under the model's assumptions:
 - Discrepancies attributed to the step-character of the simulation, in contrast with the continuous analytical expressions
 - Despite discrepancies in the absolute values, the evolution of several quantities with energy, multiplicity and p follows the analytical Matthews model

• Evolution of N_{muons} with energy when stochasticity is introduced follows what we expect from Matthews model

- N_{muons} is strongly correlated with the parameters studied, mainly the EM energy percentage. Intuitive: when EM energy percentage decreases, there is more energy going into hadronic showers, producing more muons
- x_{max} is weakly correlated with the parameters studied. It seems to decrease slowly with the increase of the EM energy percentage and ρ , which matches the intuition
- N_{muons} and x_{max} were observed to be weakly and positively correlated. Despite understanding that when the EM energy percentage decreases, N_{muons} increases and x_{max} tends to increase, a deeper analysis of the variation of x_{max} with different parameters is needed