

Universidade do Minho Escola de Ciências

DATA SCIENCE *in* (ASTRO)PARTICLE PHYSICS AND BEYOND

Nuno Castro nfcastro@lip.pt

many thanks to Inês Ochoa, Rute Pedro, Miguel Romão, Maria Gabriela Oliveira, Miguel Caçador Peixoto, Paulo Brás, Ruben Conceição and Joana Sá for the useful discussions and for providing material for this talk

Fundação UIDP/50007/2020 para a Ciência LA/P/0016/2020 e a Tecnologia CERN/FIS-COM/0004/2021

LIP Laboratório de Instrumentação e Física Experimental de Partículas

- LIP is the reference laboratory for experimental particle physics and associated technologies in Portugal
- LIP exists for the discovery of the fundamental laws of the Universe, ensuring the full participation of the Portuguese scientific community in this endeavour, and to share this knowledge with society
- The laboratory is nation-wide, with nodes in Lisbon, Coimbra and Braga, in close collaboration with the local universities

LIP Laboratório de Instrumentação e Física Experimental de Partículas

CERN

- The European Laboratory for Particle Physics
- Located in the franco-swiss border
- Portugal is a member since 1986, with LIP being the reference portuguese partner

in the frontier of the technology

- Particle physics accelerators and detectors are amongst the most complex devices built by the humankind
- Being on the edge of the technology is required

from data to physics at the Large Hadron Collider a long and complex path

 40 million proton-proton collisions per second

from data to physics at the Large Hadron Collider a long and complex path

hundreds

 of millions
 of readout
 channels

Large Hadron Collider data, data, data, ...

tagging special objects in collisions

Boosted jets: Increasing transverse momentum, p_T

Boosted jets: Increasing transverse momentum, p_T

Boosted jets: Increasing transverse momentum, p_T

• Deep neural networks for supervised classification

ATL-PHYS-PUB-2020-019

ATL-PHYS-PUB-2020-019

tagging special objects in collisions tagging long-lived particles

tagging special objects in collisions tagging long-lived particles

tabular data: use of a supervised dNN

JHEP11 (2021) 219

JHEP11 (2021) 219

jet images: Convolutional Neural Networks (CNN)

JHEP11 (2021) 219

Lund planes: Recurrent Neural Networks (RNN)

Model Type		Hyperparameter	Value
		Number of Filters	104
	Normalised	Spatial Dropout Rate	0.3
CNN (Images)		Gamma	0.925
		Number of Filters	88
	Unnormalised	Spatial Dropout Rate	0.0
		Gamma	0.970
		Number of Layers	2
RNN (Lund)		Number of Units	15
		Gamma	0.935
		Number of Layers	6
DNN (Clobal)		Number of Units	116
Divite (Global)		Dropout Rate	0.1
		Gamma	0.93

JHEP11 (2021) 219

Searching for new phenomena supervised learning

background

Searching for new phenomena supervised learning

Searching for new phenomena supervised learning

Searching for new phenomena what if the signal is different from expected?

Searching for new phenomena autoencoders

Searching for new phenomena anomaly detection

Events / bin

Eur.Phys.J.C 81 (2021) 1, 27

Searching for new phenomena anomaly detection

Detecting "anomalous" jets via sequence modeling

Using a variational recurrent neural network to assign an "anomaly score" to each jet

JINST 16 (2021) P08012

Quantum computing in particle physics: QML Variational Quantum Classifier

 $\ket{\psi_X'} = U(heta) \ket{\psi_X}$

parameterized by a set of learnable parameters

(very preliminary studies)

Underground experiments

• Searching for the elusive dark matter

Underground experiments search for very rare events

Underground experiments search for very rare events

pulse classification

Name [unit]	Type	Description
pA [phd]	Float	Total integrated area from the start to the end of the pulse
pH [phd/ns]	Float	Pulse maximum amplitude
pHTL	Float	Fraction of pulse length time at which the pulse reaches maximum amplitude
pL90 [ns]	Int	Pulse length time at 90% area, from 5 to 95% integrated area time
pRMSW [ns]	Int	Pulse root mean square (RMS) width
pF50	Float	Fraction of the pulse area integrated in a 50 ns time window starting 10 ns before the 5% integrated area time
pF100	Float	Same as $pF50$ but for a 100 ns integration window
pF200	Float	Same as $pF50$ but for a 200 ns integration window
pF1k	Float	Same as $pF50$ but for a 1 μ s integration window
TBA	Float	Top-bottom asymmetry: difference between the top PMT area fraction and bottom PMT area fraction
Coincidence	Int	Number of PMT channels that record signal within pulse boundaries

Eur. Phys. J. C (2022) 82:553

Underground experiments search for very rare events

GMM class	TriNet pred	TriNet predicted class				Total	
	S 1	S2	SE	Other			
S 1	11,571	8	0	280	11,851	5.9%	
S2	0	51,001	444	10	51,455	25.7%	
SE	0	380	128,211	8	128,599	64.4%	
Other	698	38	28	7331	8095	4.0%	
Total	12,269	51,419	128,683	7629	200,000		

Eur. Phys. J. C (2022) 82:553

Astroparticle physics

The Southern Wide-field Gamma-ray Observatory

- Detecting extensive air showers produced by gamma rays
- Southern Wide-field Gamma-ray Observatory

Gamma/hadron discrimination with ML

Top view of the WCD station and the signal detected in each PMT

(Single 2 GeV muon injected)

Eur. Phys. J. C (2021) 81:542

Gamma/proton discrimination with ML

• 1-D convolutional neural network

Eur. Phys. J. C (2021) 81:542

Social Physics and Complexity

 SPAC uses large scale computational tools to study societal challenges, especially in disease forecasting, human behavior and public policy

Social Physics and Complexity

Social Physics and Complexity

		QUESTIONS	DATA	TOOLS
HEALTH	+ • -	Online vs. Offline Patterns Emergency Now-casting Antibiotic Over-prescription	Google Trends SNS24 Twitter ER waiting times E-prescriptions Weather	Math Modelling ML Epidemiology
POLICY		Political Decisions Gender Differences Agenda Setting Voting vs. Discourse	Media records Twitter Parliament data Surveys	NLP Networks Math Modelling Complex Systems
AVIOUR		Cognitive Biases Attitudes Towards Science Fake News Sharing	Large scale surveys Behavioral experiments Twitter	Networks Math Modelling Psychology

BEI

I are inclus sharing

Economic databases...

Information

summary

- at LIP we have more than 30 years of expertise in the analysis of large and complex data
- the most suitable technique has to be chosen for each problem
 - uncertainties and imperfect datasets
- synergies with other fields and activities

Thanks

any questions? you can also find me at nfcastro@lip.pt