

PHYSICS AND INNOVATION AT THE BRAZILIAN CENTER FOR PHYSICS RESEARCH

Marcelo Portes de Albuquerque CBPF Technologist Technology Development Coordination - COTEC

27-30 JUNHO 2022, Universidade de Coimbra, Coimbra, Portugal

Um evento que mostra o potencial da ciência de dados na sociedade moderna e estimula sinergias entre investigação fundamental e indústria

CBPF - MISSION

 Carry out fundamental research in Physics and develop its applications

- Act as the National Institute of Physics of the MCTI
- Physics Hub for:
 - Scientific investigation
 - postgraduate training and improvement of scientific personnel.

MINISTÉRIO DA CIÊNCIA,TECNOLOGIA E INOVAÇÕES

CBPF – R&D

Experimental, Theoretical and Applied

- High Energy Physics and Astroparticles
- Materials and condensed matter
- Nanoscience and Nanotechnology
- Biophysics and Biomaterials
- Statistical Mechanics and Complex Systems
- Information and Quantum Computing
- Cosmology and Gravitation
- Signal Processing and Artificial Intelligence
- Scientific Instrumentation

Science and Technology driving

Fundamental Research → **Application**

Medicine:

- X-rays, NMR
- PET-CT (Positron Emission Tomography)

Materials and Biology \rightarrow Synchrotron Radiation

Semiconductors

- Lithography → Nanotechnology
- measurement in the manufacture of microelectronic devices →
 Scanning Electron Microscope

Industrial process control

Robotic sensing

Software

High vacuum → production, measurement and maintenance in increasing volumes;

Cryogenic techniques

Industrial-scale superconducting magnets

Communication → Optical Fibers and Laser

R&D benefits

are not fully anticipated in the origin of pure scientific knowledge

Oil &e Gas

Resistivity measurement during oil well drilling.

NMR allows real-time measurement to locate and identify fluids. http://www.bakerhughes.com/products-and-services/evaluation/logging-while-drilling/evalmagtrak-magnetic-resonance

Infrastructure Bottlenecks

2012 - Brazilian Physics Society made a report of "Physics and National Development":

"Scientific instrumentation and multi-user laboratories were identified as the main bottlenecks, both important to increase interactions with the business sector."

Tabela 10 – Respostas sobre as áreas em que cada comunidade de Física acredita existirem gargalos de infraestrutura que devem ser superados para induzir competitividade à Física brasileira.									
Total de respondentes: 3063	N° de respondentes	N° de respostas	Instrumentação científica	Registro de patentes	Programa espacial	Lab. nacionais multiusuários	Computação larga escala	Programa nudear	Outros
Universidade	1.240	3.260	814	532	257	833	477	189	158
Colégio/Escola	302	864	199	121	78	212	144	84	26
Empresa	88	214	45	45	17	55	28	14	10
Instituto de Pesquisa	253	703	163	102	81	163	80	77	37
Outros/não declarados	1.180	2.623	617	424	233	629	402	224	94
TOTAL	3.063	7.664	1.838	1.224	666	1.892	1.131	588	325
TOTAL		100%	24%	16%	9%	25%	15%	8%	4%

6

Context in CBPF

• CBPF tradition in Scientific and Technological Instrumentation

Neutrino

Creation of the Professional Master's Degree in Physics in Scientific Instrumentation

To train professionals who can work in different segments and companies in technologies development:

- Automation of experiments and industrial processes
- Tools for measuring physical quantities (electrical, thermal, magnetic, etc.)
- Construction of equipment, devices, software, prototypes, etc.

Office of Innovation and Technology Transfer

CBPF Centro Brasileiro de Pesquisas Físicas

CE [] EM ro de Tecnologia Mineral Institu

Instituto Brasileiro de Informação em Ciência e Tecnologia Instituto Nacional de Ir Matemática Pura e Aplicada

INSTITUTO Nacional de Tecnologia

LNCC Museu de Astronomia e

Computação Científica

eu de Astronomia e Ciências Afins

http://www.nitrio.org.br

CBPF/R&D in partnership with Industry Legal Framework of ST&I

- Artificial Intelligence and Deep Learning for Petrophysics and Geophysics;
- Nanotechnology for the O&G industry
- New materials and techniques for medical implants
- Micro and nanoscale magnetic resonance
- New Materials, Nanotechnology and Magnetic Devices
- Mechanical Structure of the Cherenkov Telescope Array

R&D for efficiency in Materials Surface applications

BR

FINE INSTRUMENT TEC

CBPF Highlights

Research, Technological Development and Innovation Activities at CBPF

Biomaterials for Medical and Environmental Use

Development and Innovation

- Biomaterials for bone and dental tissue regeneration
- Nanostructured biomaterials and nanoparticles for drug delivery and Nanotoxicology
- Immobilization of heavy metals in waste and polluted water

Materials

- Calcium phosphates
- Calcium phosphate/polymer composites
- Coatings on metallic implants

Product Development

Implants coated with Nanometric Hydroxyapatite

Commercial titanium screw with nanometric hydroxyapatite coating (100nm)

Metallic implant surface

for mechanical adhesion

biocompatible, nanometric

adhesion without producing

coating to induce bone

and homogeneous,

toxicity

with micrometric roughness

Coating material free from other less biocompatible phosphates or toxic phases such as calcium oxide

Preclinical tests (In-Vivo) in rabbits and dogs have proven: Strong bonding and bone growth (in blue) to the HAPnano coated screw (in black) compared to the uncoated one

Instrument for Coating Metallic Implants with Nanometric Biomaterial

Developed technology:

- Plasma electrical parameters measurement system
- Real-time measurement of coating deposition rate.

Ready for Technology Transfer:

Equipment for scale production of nano-sized adherent coatings of nano-sized calcium phosphates at room temperature:

Adds biocompatibility to implants and can reduce failure and integration problems of orthopedic metallic implants used by the Public Health System in Brazil (SUS)

Nanotechnology Network applied to Health for the development of nanoproducts

Tissue Regeneration, Therapies and Diagnosis (NanoHealth Group).

 NanoHealth works in the R&D of new products based on nanotechnology as well as the technological support to companies linked to health, the hospital sector and regulatory agencies.

Production — Biological Assessments — Product Efficiency/Safety — Market

 Develops drug delivery systems, diagnostic nanomaterials, grafts and implants for dentistry and orthopedics and radiopharmaceuticals based on polymers, ceramics, composites, magnetic oxides, metals, carbon complexes and biological nanostructures

 It brings together 23 laboratories from Universities and Research Institutes in the State of Rio de Janeiro in the areas of materials engineering, chemistry, physics, biology, pharmacy, medicine and dentistry with extensive experience in Nanotechnology applications to Health.

ARTIFICIAL INTELLIGENCE Classification, Simulations and Forecasts

We participated and won the International Astrophysics Challenge / 2020

International challenge to identify gravitational lensing systems in simulated images.

Developing a Victorious Strategy to the Second Strong Gravitational Lensing Data Challenge

C. R. Bom^{a,b}, B. M. O. Fraga^a, L. O. Dias^a, P. Schubert^{a,1}, M. Blanco Valentin^{d,2}, C. Furlanetto^e, M. Makler^{a,c}, K. Teles^a, M. Portes de Albuquerque^a, R. Benton Metcalf^{f,g}

^aCentro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, RJ, Brazil
 ^bCentro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rodovia Mário Covas, lote J2, quadra J, CEP 23810-000, Itaguaí, RJ, Brazil
 ^cInternational Center for Advanced Studies & Instituto de Ciencias Físicas, ECyT-UNSAM & CONICET, 25 de Mayo y Francia. C.P.: 1650, San Martín, Buenos Aires, Argentina
 ^dElectrical and Computer Engineering Department, McCormick School, Northwestern University, 633 Clark St, Evanston, IL 60208
 ^cUniversidade Federal do Rio Grande do Sul, Departamento de Física, CEP 91501-970, Porto Alegre, RS, Brazil
 ^fDipartimento di Física e Astronomia, Università di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy
 ^gINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy

Abstract

Strong Lensing is a powerful probe of the matter distribution in galaxies and galaxy clusters and a relevant tool for cosmography. Analyses of strong gravitational lenses with Deep Learning (DL) and Convolutional Neural Networks (CNNs) have become a popular approach due to these astronomical objects' rarity and image complexity. Next-generation surveys (both ground and spacebased) will provide more opportunities to derive science from these objects and an increasing data volume to be analyzed. However, finding strong lenses is challenging, as their number densities are orders of magnitude below those of galaxies. Therefore, specific Strong Lensing search algorithms are required to discover the highest number of systems possible, with high purity and low false alarm rate to minimize human intervention. The need for better algorithms has prompted the development of an open community data science competition named Strong Gravitational Lensing Challenge (SGLC) by the Bologna group. In this work, we present the Deep Learning strategies and methodology used to design the highest-scoring algorithm in the II SGLC, which was based on Euclid-like simulations. We discuss the approach used for this dataset, the choice for a suitable architecture, particularly the use of a network with two branches to work with images in different resolutions_and its optimization. We also discuss the limit of what

tailor-made architecture in a survey in contrast pipeline, and discuss the best choice to easily ment. This work helps to take a step towards

networks

The team working for the industry contributed to the scientific project.

Da esq. para dir., Patrick, Marcelo, Martín, Paulo, Clécio, Pedro, Manuel, Marcos e Luciana (Crédito: NCS/CBPF)

https://portal.cbpf.br/pt-br/ultimas-noticias/grupo-do-cbpf-vence-desafiointernacional

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

Journal of Petroleum Science and Engineering 170 (2018) 315–330

Estimation of permeability and effective porosity logs using deep autoencoders in borehole image logs from the brazilian pre-salt carbonate

RNAL OF

PETROLEUM SCIENCE & ENGINEERIN

Manuel Blanco Valentín^{a,*}, Clécio R. Bom^b, André Luiz Martins Compan^c, Maury Duarte Correia^c, Candida Menezes de Jesus^d, Anelise de Lima Souza^d, Márcio P. de Albuquerque^a, https://doi.org/10.1016/i.petrol.2018.06.038

Marcelo P. de Albuquerque^a, Elisângela L. Faria^a

Lithology Classification in Pre-Salt

RattlePy

Deep Learning architecture to make a fast and reliable analysis from the Ultrasound and Resistivity images that can be validated by the geologist.

Arquitetura Rede Convolucional 101-10-10 kNN Classifier Lithology Dissolution Contents lists available at ScienceDirect Journal of Petroleum Science and Engineering Berlin 171 SEVIE journal homepage: www.elsevier.com/locate/petrol

<u>Journal of Petroleum Science and Engineering</u> <u>Volume 179</u>, August 2019, Pages 474-503

https://linkinghub.elsevier.com/retrieve/pii/S0920410519303663

A deep residual convolutional neural network for automatic lithological facies identification in Brazilian pre-salt oilfield wellbore image logs

Manuel Blanco Valentín^{a,*}, Clécio R. Bom^{a,b}, Juliana M. Coelho^a, Maury Duarte Correia^c, Márcio P. de Albuquerque^a, Marcelo P. de Albuquerque^a, Elisângela L. Faria^a

^a Coordenação de Atividades Técnicas, Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Xavier Sigaud, 150, Ed. César Lattes, Urca, Rio de Janeiro, Brazil ^b Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rodovia Márcio Covas, Lote J2, Quadra J, Itaguaí, Brazil ^c Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES - PETROBRAS), Av. Horácio Macedo, 950, Cidade Universitária, Rio de Janeiro, Brazil

NMR for Petrophysics

Development of physical models to describe the relationship between relaxation time and porosity

BR

PETROBRAS

Examples of sintered rock plugs with controlled porosity, for high (or low) field NMR experiments. Produced from glass spheres, with controlled granulometries

Synthetic Porous Samples 3,81cm (1.5") 0,8cm (0.31") Low Field **High Field NMR Samples NMR Samples**

TEM images of four sintered Plugs with different porosities for NMR experiments. Porosity can be characterized with NMR relaxometry.

NMR for Petrophysics

NMR on the nanometer scale

Development of high sensitivity NMR systems for nanometric samples.

Applicability

- Academic: study of samples at the nanometer scale and manipulating quantum systems.
- 4 Master's dissertations in progress
- Industrial: high-sensitivity portable MRI systems.
 - R&D in collaboration with the company
 - Fine Instrument Technology

Figure: Example of a resonator produced at CBPF / LABNANO

External collaborations: Technishe Universität Dortmund (Alemanha)

LABNANO/CBPF

The Multiusers Facilities of Nanoscience and Nanotechnology integrates a set of systems and services open to the Brazilian scientific and technological community and aims to support national development in science, technology and innovation at the nanoscale, with an emphasis on nanofabrication.

Industrial Applications and innovation support at LABNANO

LABNANO/CBPF is the 1st Brazilian Nanocenter

- Multiuser Laboratory of Nanosciences and Nanotechnology.
- **Open facility:**operates with project submission and peer review. 50% of the machine time is made available to external users (SisNANO, 2013& 2019). 10% is made available for the provision of services or agreements with companies.
- Created as a Strategic Regional Facility to drive the fabrication and characterization of nanostructures with a focus on electron beam nanolithography and analytical electron microscopy.
- It serves users from all over the country.
- It is the only open laboratory in the state of Rio de Janeiro and the second in the country (there are only LABNANO/CBPF and LNNANO/CNPEM/Campinas.
- Strong user training program (we don't do it, we teach you how to do it).
- Shared and growing knowledge base.

LABNANO/CBP

About LABNANO

Axes of Operation

Research and Development (knowledge base) Jointly with CBPF LABs and users Training and Service to Users Electronic Microscopy (PG) courses at CBPF and abroad specialized schools Individual user training

Technical Training and Infrastructure Expansion

National and international cooperation

- CBPF-INL (1) INC INTERNATIONAL IBERIAN LAGORATORY
- CCNBR-Nano (finished)

LABNANO/CBPF

Brazil-Argentina Nano Center

Interaction with the productive sector

- Brazil NANO Network SIBRATEC
- Technical-Scientific Cooperation
 Agreements
- Specialized services for companies

⁽¹⁾ INL - International Iberian Nanotechnology Laboratory, Braga - Portugal

Laboratório Multiusuário de Nanociências e Nanotecnologia

Nanofabrication: examples of projects at LABNANO

- Thermomechanical actuators for in-situ studies with MET
- Magnetoelastic microresonators for medical applications
- Magnonic crystals and materials for high frequencies
- Mixed systems: nanoscillators by spin torque transfer
- Semiconductor nanowires for sensors
- Mixed systems: exciting magnons via IDC in piezoelectric substrate

LABNANO/CBPF

Laboratório Multiusuário de Nanociências e Nanotecnologia

INTERNATIONAL COLLABORATIONS SWGO

Southern Wide Field Gamma-Ray Observatory – international collaboration for the study of gamma ray sources – brings together experiments such as SGSO and LATTES

SWGO Project

Future Gamma-ray Observatory in the Southern Hemisphere

- The Southern Wide-field Gamma-ray Observatory (swgo)
 - 53 R&D institutions
 - 12 founding countries (Brazil included)
 - 5000 to 6000 rotomolded tanks (detector core only)

CBPF:

- Demonstrate that it is possible to manufacture rotomolded tanks with the desired specifications (in partnership with the industry).
- New production technique developed
- Construction of prototypes

Proof of concept 1600 tanks produced by the Brazilian industry for the Pierre Auger Observatory

- Machine Learning
- AI studies to complement real data
- Increase detection capability

CBPF:

 Applications for reconstruction of extensive atmospheric shower parameters

SWGO development of new production techniques

LABORATÓRIO DE INSTRUMENTAÇÃO FÍSICA EXPERIMENTAL DE PARTICULA: http://www.lip.pt/

Important spin-out from basic science projects

SWGO development of new production techniques

To demonstrate that it is possible to apply this technique: The industry invested BRL R\$ 4 million

The first prototype was made for an agricultural project, using the designed technique for roto-molded tanks with thermal insulation.

Ex: prototype for inoculation of seeds in the planting of: Soybean, corn, wheat and sugar cane (in inoculation the bacteria cannot exceed 30°C).

It was a success this year in AgriShow International Agricultural Technology Fair in Action

http://www.lip.pt/

SWGO/MARTA Environmental Protection Projects

GAS REGENERATION

Environment:

- They are polluting substances and controlled by environmental agencies.
- Greenhouse effect
- Cooling gases are responsible for 4X more greenhouse effect than all the cars on the planet.

Financial:

- Gas expensive and are getting more and more expensive.
- Regenerating is much cheaper than crafting.

Both projects are using regenerated gas R134a (tetrafluoroethane) for 3.5 years in the Detector Characterization Lab (CBPF)

Collaboration with the Brazilian industry to develop a dedicated system for gas regeneration to **RPCs,** in a closed circuit.

- We count on the support of the Brazilian industry:
 - **Company specialized in gas regeneration**
 - Chemical engineer of renowned gas manufacturer
 - Staff specialized in gas regeneration
- Distiller produced by Recigases -> Closed loop regeneration process control that was developed at Detector Lab (Lab. Neusa Amato - CBPF)
- The second unit will be sent to the LIP-Coimbra Detector Laboratory for efficiency tests

Rio Science Datacenter

RSDC - Technologies and applications for Science

- Scientific projects with HPC needs and large data transfer
 - High Energy Physics: WLCG LHC / CERN
 - Cosmology : Stripe-82 Survey (CS82) e SOAR GRAVITATIONAL ARC SURVEY SOGRAS (Imagens Hi-Res)
 - Materials Physics: Nanoscience and Nanotechnology Images
 - BSDC: Infrastructure for data storage and astrophysics software (Open Universe).
- Participation in projects:
- ScienceDMZ RNP
- LHC Open Network Environment

SOAR: SOuthern Astrophysical Research Telescope

Specialized in networking for high-performance scientific computing

Rio de Janeiro Metropolitan Area Network for S&T

Rede-Rio MAN/FAPERJ Rio Science Datacenter (PoP-RJ/RNP)

ENTREPRENEURIAL SCIENTIST PROGRAM (CE)

A CBPF initiative to promote entrepreneurship in young scientists

ENTREPRENEURIAL SCIENTIST PROGRAM

Building the entrepreneurial mindset in the young scientist Connect with industry professionals Stimulate the creation of science and technologybased startups nit ri

Entrepreneurship Workshop (Dynamics)

CBPF Entrepreneur Meeting with SEBRAE - Brazilian Support Service for Micro and Small Companies

O GLOBO

DA ACADEMIA PARA O MERCADO

Como transformar pesquisa científica em empresa de base tecnológica

Por Camilla Muniz • 03/10/2020 • 20:47

Visita técnica do @<u>cetenebrasil</u>

...

Entrepreneurship Workshop (Business model)

SEBRAE

CE Program Results

CBPF graduate students won industry-sponsored hackathons.

Thiago Palhares – Colaborador CBPF / UFRJ 6th place 1st Hackathon Hacking Health Rio de Janeiro; 2017 https://www.linkedin.com/in/thiago-palhares-11bb55a7/?originalSubdomain=br

Daniela Leite – MsC Física pelo CBPF 1st place in Hacking Rio; 2018

Daniela Leite – MsC Physics by CBPF 2nd place no Hackathon Globo Grupo 12: G-Flow; 2019 https://g1.globo.com/economia/tecnologia/hackathon/2019/ao-vivo/hackathon-2019.ghtml

HACKCOVID19

ONLINE HACKATHON /2020 - Create technologies to help face the challenges of covid-19

Micro and Small Companies

LOGICALIS Architects of Change

WIPO

HACKCOVIDI9 In NUMBERS May 15th to 17th, 2020 72 hours

Participants 984 Challenge 220

Mentors
121

mensagens

125 mil

Projects 82

YouTube View 11,9 mil

XIII CBPF School TOTALMENTE VIRTUAL **DE 2 A 13 DE AGOSTO DE 2021**

Innovation and the legal framework of S&T

1 🖹 Inovação e Marco Legal

Intellectual property

Introdução a Propriedade Intelectual

🖹 Estratégia para proteção da criação intelectual

Organization of R&D Projects to Innovate

📄 Organização de Projetos de P&D para inovar

Entrepreneurship

Empreendedorismo e Modelagem de negócios

The CBPF School is a traditional event in the Brazilian Physics calendar, attracting a large number of undergraduate and graduate students from all regions of Brazil and Latin American countries. Its periodicity is usually biannual.

Participation in the MCTI Science Village – RIW

Space where the research centers of the Ministry of Science, Technology and Innovation presented the initiatives, projects and the most modern that is being developed and researched in the country

Scientific Instrumentation and Innovation Workshops

Workshop to link Fundamental Research with Industry

science deep tech and innovation

16, 17 e 18 de novembro 2022

OF INSTRUMENTATION AND INNOVATION

Physics and Innovation at CBPF

Well-trained professionals are essential for scientific and technological progress, as well as equipment that allows testing the frontiers of knowledge.

Scientific progress is often associated with new instruments and often in innovative ways.

It is guite common that instruments developed for an experiment will have commercial applications.

CBPF has been promoting technological development, knowledge transfer and an R&D partnership with institutions and companies.

To strengthen these activities, CBPF has been working on:

- Master's in Physics Scientific Instrumentation
- Multi-User Open Facilities
- Office of Technology Transfer and Innovation

Promoting science in society

SCIENTIFIC DISCLOSURE

SCIENCE GRAFFITI

tir mais tardi

240 m²

ratite da Ciênc

An innovative concept of art and science

Painted on the CBPF wall, Graffiti celebrates science as a form of culture with an emphasis on physics and related areas.

GRAFITE DA CIÊNCIA

http://www.grafite-ciencia.cbpf.br/

This 'Science Graffiti Wall' is a tribute of CBPF to a hundred of scientists and inventors, the 'Science Builders.' They are men, women, Brazilians, foreigners, from all ages and all areas of knowledge.

27-30 JUNHO 2022, Universidade de Coimbra, Coimbra, Portugal

Um evento que mostra o potencial da ciência de dados na sociedade moderna e estimula sinergias entre investigação fundamental e indústria

