

Helping Very Low Birth Weight Infants thrive using Near Infrared Spectroscopy and Machine Learning

Diogo Barros

Diogo Barros Gonçalves

2016

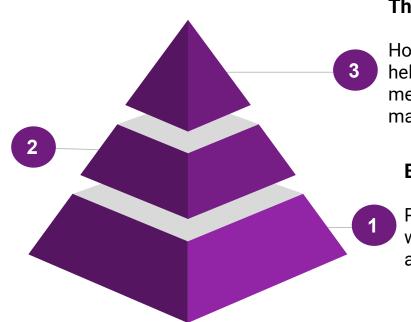
2016

nterface sc enc a

2017 - 2019

2018 - 2019

2018 - 2019



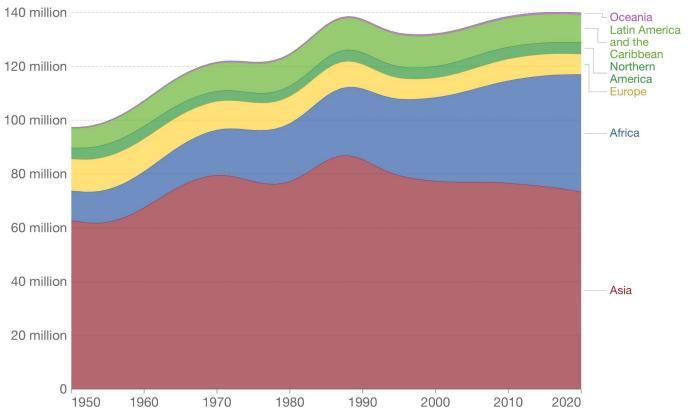
Agenda

State of the Art

Medical community approaches to address preterm infants undernourishment and limitations.

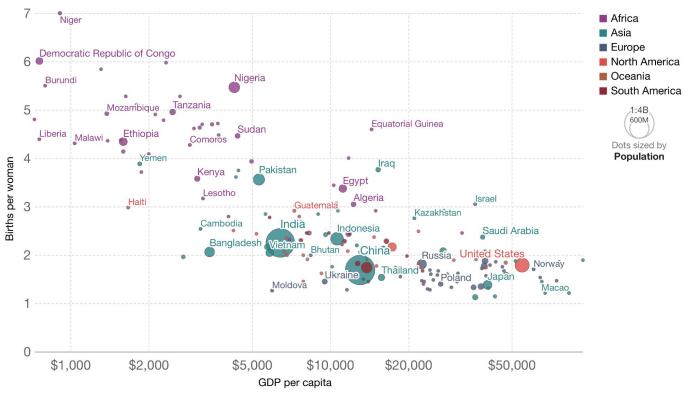
The Preemie System

How NIR Spectroscopy and ML help preterm infants thrive, ML methodology for macronutrient quantification.


Background

Preterm birth rates worldwide, in the EU and US and its economic cost.

How many infants are born each year?



What's the correlation between #children and GDP per capita?

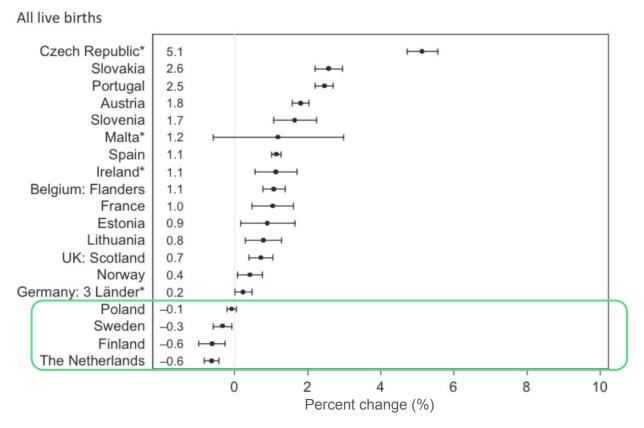
Children per woman vs. GDP per capita, 2017

Fertility rate, measured as the average number of births per woman versus gross domestic product (GDP) per capita, measured in 2011 international-\$.

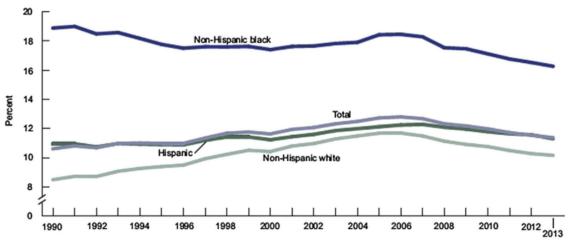
Number of preterm births and preterm birth rates by UN geographical region

Region/subregion ^a	Prete	rm births	Preterm birth rate			
	No. in 1000s	95% CI ^b	%	95% CI ^b		
World total	12 870	12 228-13 511	9.6	9.1–10.1		
More developed countries	1 014	982-1 046	7.5	7.3-7.8		
Less developed countries	7 685	7 109-8 261	8.8	8.1-9.4		
Least developed countries	4 171	3 891-4 452	12.5	11.7-13.3		
Africa	4 047	3 783-4 311	11.9	11.1-12.6		
Eastern	1 686	1 481-1 891	14.3	12.5-16.0		
Middle	602	535-669	11.6	10.3-12.9		
Northern	407	290-523	8.7	6.2-11.2		
Southern	228	191–265	17.5	14.6-20.3		
Western	1 125	1 036–1 215	10.1	9.3-10.9		
Asia	6 907	6 328-7 486	9.1	8.3-9.8		
Eastern	724	650-798	3.8	3.4-4.1		
South-central	4 467	3 944-4 991	11.4	10.0-12.7		
South-eastern	1 271	1 062-1 480	11.1	9.3-13.0		
Western	396	290-501	7.9	5.8-9.9		
Central	49	21–77	3.8	1.6-5.9		
Europe	466	434-498	6.2	5.8-6.7		
LA and the Caribbean	933	858-1 009	8.1	7.5-8.8		
Caribbean	48	33-63	6.7	4.7-8.8		
Central America	295	263-326	9.1	8.2-10.1		
South America	591	524-658	7.9	7.0-8.8		
North Americad	480	479-482	10.6	10.5-10.6		
Oceania						
Australia/New Zealand	20	20-20	6.4	6.3-6.6		
Rest of Oceania	16	11-20	6.4	4.6-8.2		

Source: S. Becky et al. Bull World Health Organ 2010; 88:31-38

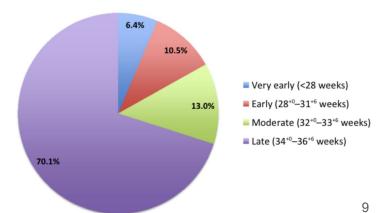

Rates of preterm birth from 1996 to 2008 in 19 European countries

Country: region/	All live births					Singleton live births				Multiple live births					
area	n (2008)	1996 %	2000 %	2004 %	2008	n (2008)	1996 %	2000 %	2004 %	2008	n (2008)	1996 %	2000 %	2004 %	2008
Austria	77 720	9.1	10.0	11.4	11.1	75 066	7.9	8.4	9.4	8.7	2654	58.2	67.5	74.6	77.8
Belgium: Flanders	69 187	7.0	7.8	8.1	8.0	66 672	5.2	6.0	6.3	6.2	2515	51.7	55.9	60.4	57.3
Czech Republic	119 455		5.4	7.7	8.3	114 722		4.2	6.0	6.3	4733		42.3	52.7	57.5
Estonia	16 031	5.5	5.9	5.9	6.2	15 506	4.9	5.1	4.9	4.6	525	38.5	46.2	47.6	51.0
Finland	59 486	5.8	6.1	5.6	5.5	57 767	4.5	4.7	4.4	4.3	1719	46.5	49.4	44.5	47.5
France*	14 696	5.4	6.2	6.3	6.6	14 261	4.5	4.7	5.0	5.5	435	40.5	48.2	44.3	42.1
Germany: 3 Länder	215 634		8.8	9.2	9.0	208 383		7.0	7.2	7.0	7251		61.7	61.8	64.2
Ireland	75 246		5.4	5.5	5.9	72 589		4.5	4.4	4.3	2657		41.8	42.3	49.9
Lithuania	31 287	5.3	5.3	5.3	5.9	30 510	4.5	4.6	4.5	4.7	777	41.3	42.6	42.7	49.4
Malta**	4152		6.0	7.2	6.7	4020		5.0	5.8	5.3	132		39.5	51.7	50.0
the Netherlands	175 160	7.8	7.7	7.4	7.4	168 829	6.2	6.0	5.7	5.7	6331	51.1	47.5	48.2	50.6
Norway	60 744	6.4	6.8	7.1	6.7	58 674	5.3	5.4	5.5	5.3	2070	43.4	43.9	49.2	48.3
Poland	414 480	6.8	6.3	6.8	6.6	404 452	6.1	5.5	5.8	5.5	10 028	43.1	44.0	50.2	51.2
Portugal	103 597	7.0	5.9	6.8	9.0	100 705	6.1	4.9	5.4	7.4	2892	45.9	49.6	54.9	63.5
Slovakia	53 624	5.1	5.4	6.3	6.8	52 227	4.4	4.5	5.2	5.6	1397	40.3	46.3	49.8	52.2
Slovenia	21 816	6.0	6.8	7.0	7.4	21 050	4.8	5.1	5.2	5.4	766	54.1	57.4	55.4	62.3
Spain	417 094	7.1	7.7	8.0	8.2	400 474	6.2	6.3	6.4	6.3	16 620	42.2	50.4	53.0	53.9
Sweden**	108 865	6.1	6.4	6.3	5.9	105 799	5.0	5.2	5.2	4.8	3066	44.1	43.4	45.2	43.3
UK: Scotland	58 275	7.0	7.4	7.6	7.7	56 423	5.8	6.1	6.3	6.1	1852	53.1	51.6	55.5	55.0


^{*}Data from France come from a nationally representative sample of births, and the years are 1995, 1998, 2003, and 2010.

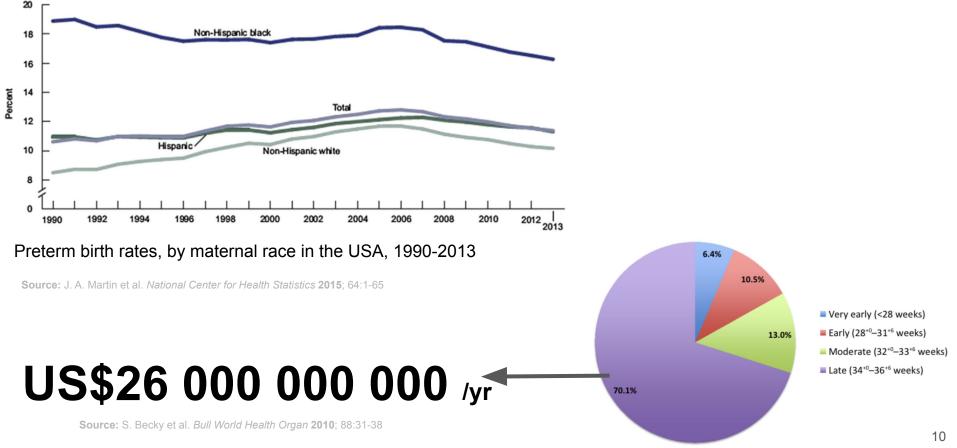
^{**2009,} instead of 2008 data.

Average annual percentage change for preterm birth rate by country



How does preterm birth rate and distribution look like in the USA?

Preterm birth rates, by maternal race in the USA, 1990-2013


Source: J. A. Martin et al. National Center for Health Statistics 2015; 64:1-65

Distribution of preterm births in the USA in 2013

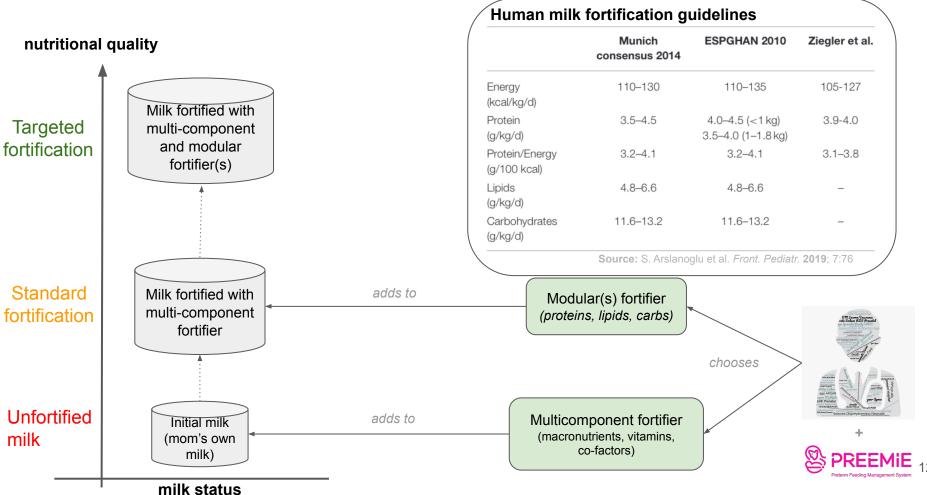
Source: H.A. Frey et al. Seminars in Fetal & Neonatal Medicine 2016; 21:68-73

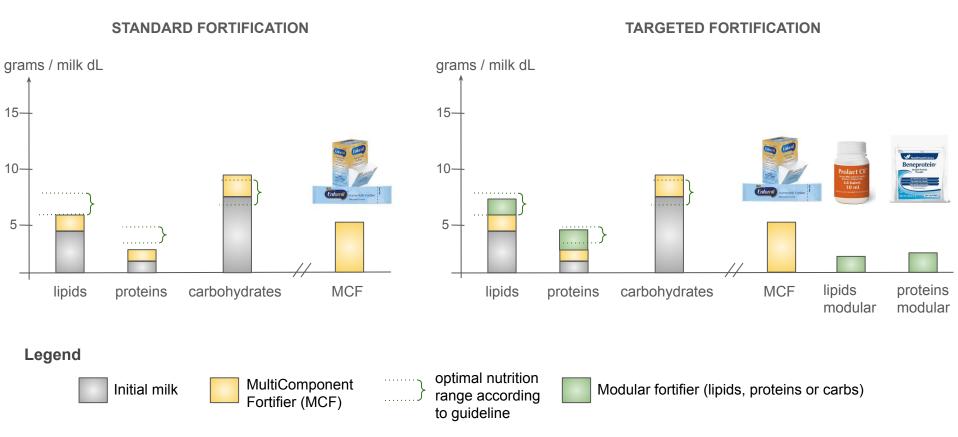
How does preterm birth rate and distribution look like in the USA?

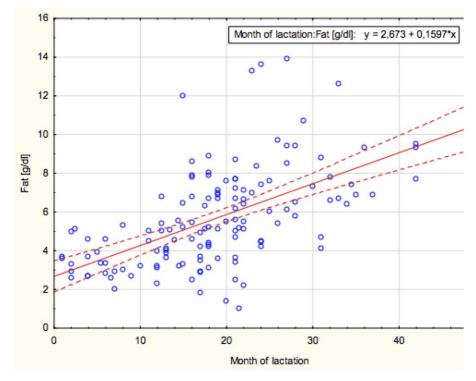
Distribution of preterm births in the USA in 2013

Source: H.A. Frey et al. Seminars in Fetal & Neonatal Medicine 2016; 21:68-73

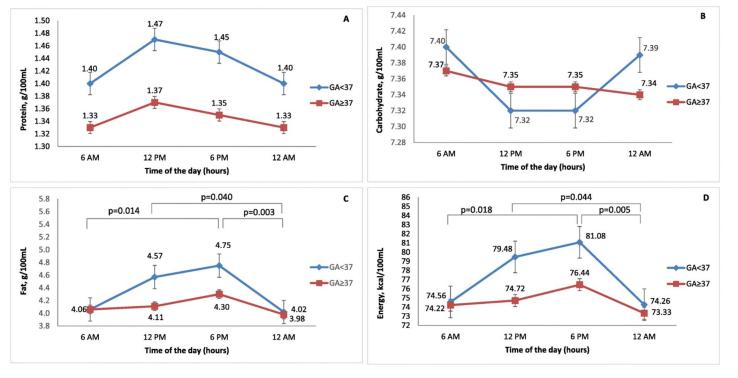
Addressing preemie's extra nourishments needs - Human Milk Fortification

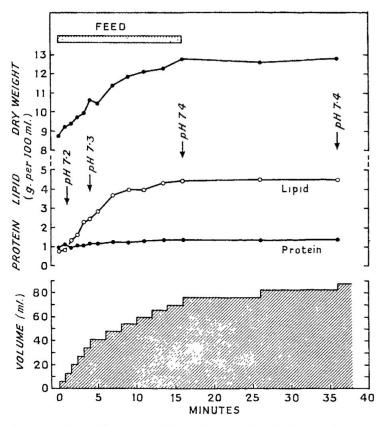

BORN TOO SOON: Preterm infants typically need extra nourishment to support their growth needs BRAIN LUNGS **TEMPERATURE HEARING** LIVER **GROWTH IMMUNE SYSTEM** Baby is born with a mostly are still maturing is still developing is restricted is still developing regulation is still developing is still maturing sterile microbiome. Milk may need higher content of ENERGY content of ENERGY content of PROTEIN content of PROTEIN content of PROTEIN content of HMOs content of FAT


Standard Fortification - "The standard practice [of] **adding a fixed amount of [multicomponent] fortifier** per 100 ml of HM to achieve the recommended nutrient intakes."

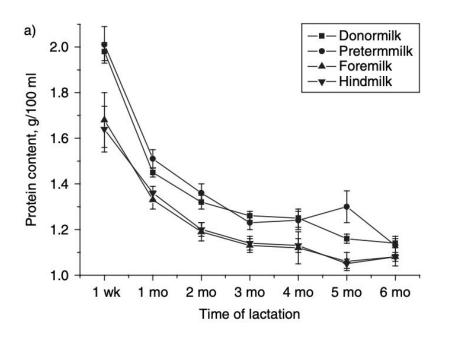

Targeted Fortification - "The concept of targeted fortification is to **analyze macronutrient composition of HM** and to fortify it in such a way that **each infant always receives the amount of nutrient that is suggested** in population-based recommendations."

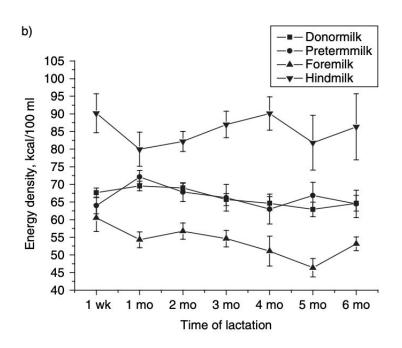
Standard Fortification vs. Targeted Fortification: qualitatively speaking


Standard Fortification vs. Targeted Fortification: quantitatively speaking



Source: O. Ballard et al. Pediatr Clin N Am 2013; 60:49-74

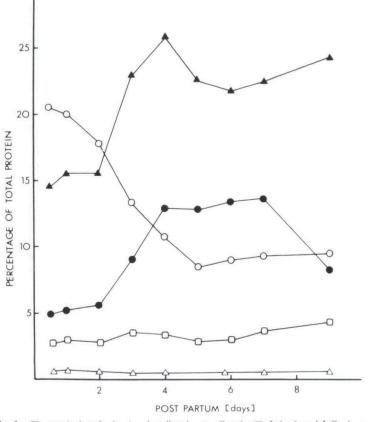
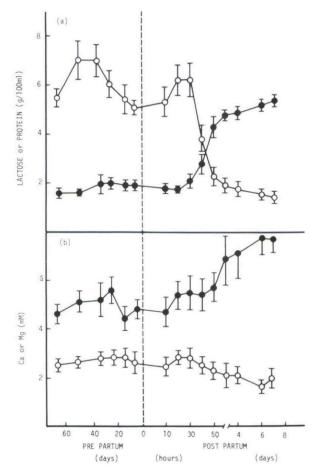
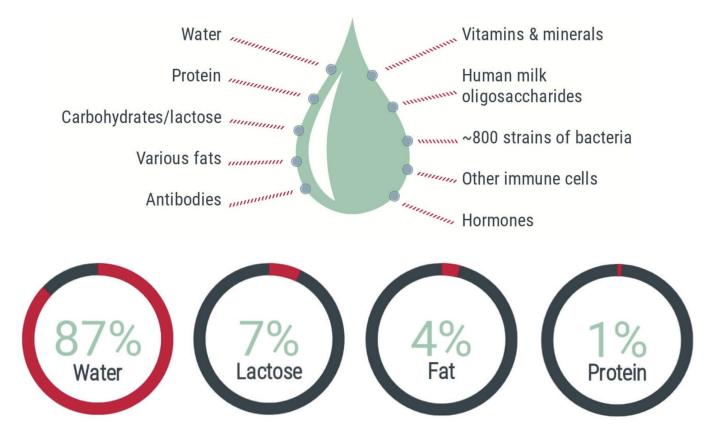
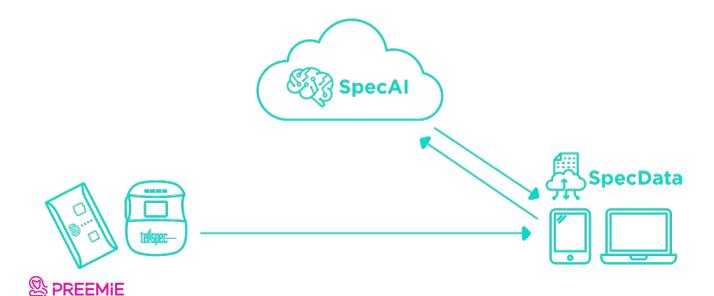

Source: M. Czosnykowska-Łukacka et al. Nutrients 2018; 10:1893

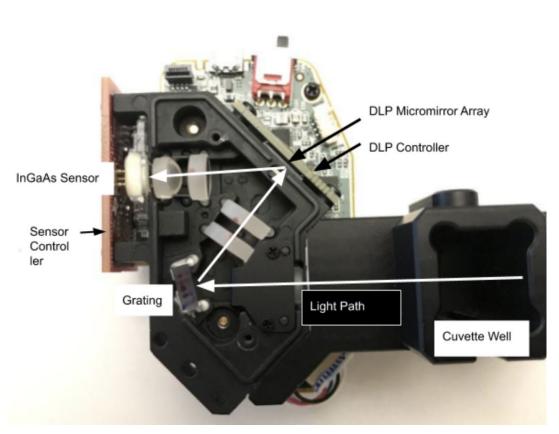


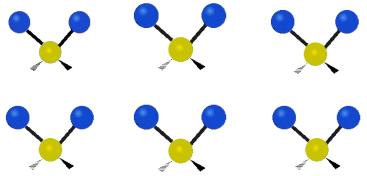
Source: I. Paulaviciene et al. International Breastfeeding Journal 2020; 15:49

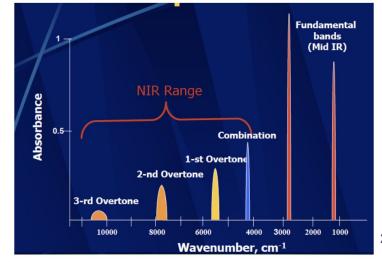
Changes in milk composition during the feed: continuous analysis of milk of one woman.

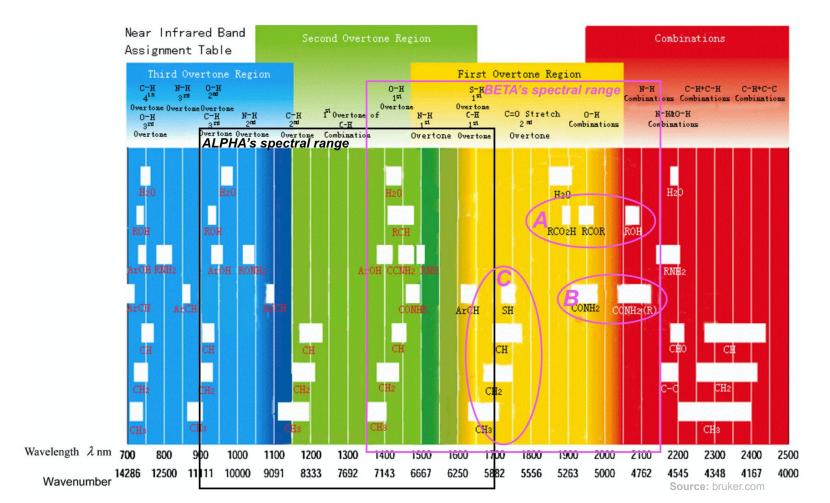
Source: T. Saarela et al. Acta Pædiatrica 2005; 94: 1176-1181

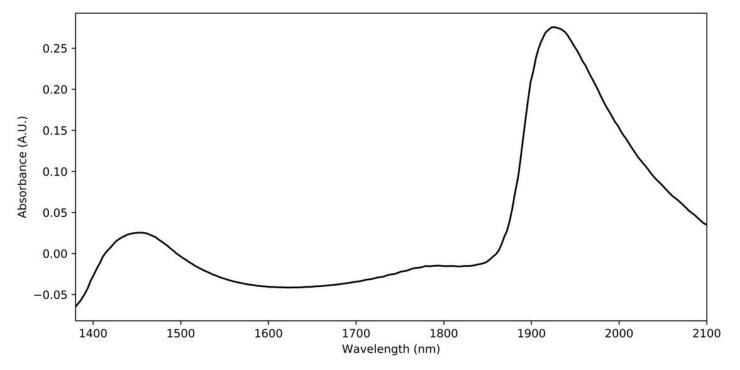






Fig. 5. Changes in lactoferrin, \blacktriangle , α -lactalbumin, \blacksquare , albumin, \square , IgA, \bigcirc and IgG, \triangle , as a percentage of total protein in the mammary secretion during the first 9 days *post-partum* of 4 non-breast feeding women (N1-N4).






The Preemie ecosystem is composed of the <u>Preemie sensor</u>, supported by <u>cloud-based computation</u>, and a <u>portfolio of four desktop and mobile applications</u> directed to Neonatal Intensive Care Units and Human Milk Banks.



Human milk spectrum acquired with the Preemie Sensor.

Protein (grams/100 mL)

Protein is the value contributing the most to the infant's growth.

HMOs (grams/100 mL)

Oligosaccharides are unique to human milk, and serve to feed the gut microbiome.

Total Lipids (grams/100 mL)

Fat is crucial for the development of the infant's neurological system.

Energy (kcal/100 mL)

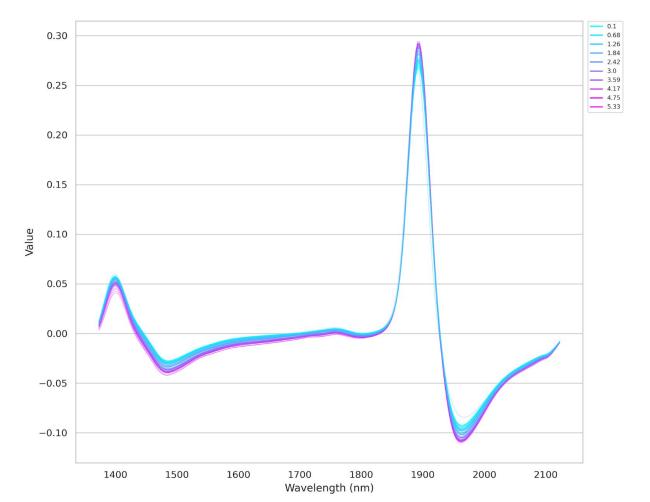
Calculated from other parameters, caloric intake is key for infant development.

Carbs (grams/100 mL)

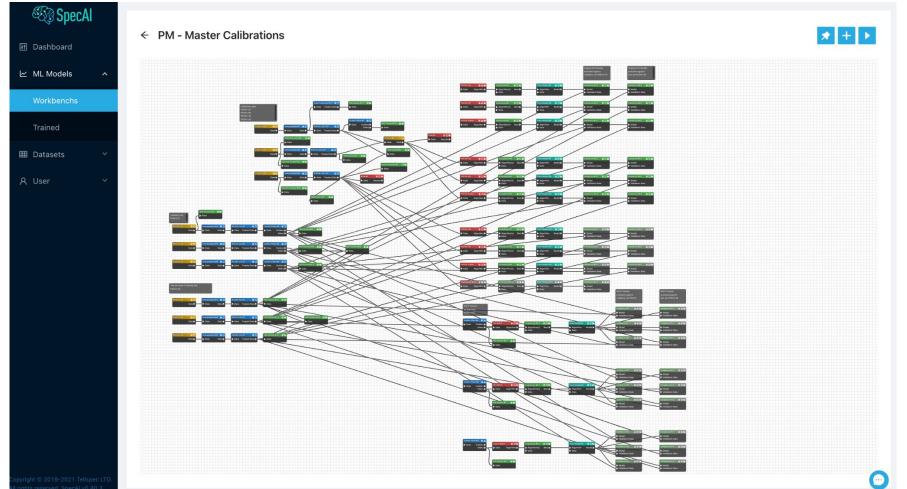
Crucial for energy intake and infant growth, they protect against pathogens and diseases.

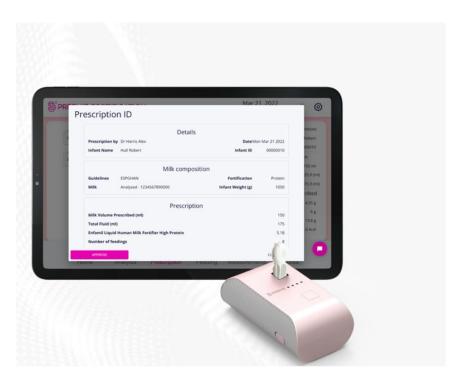
Somatic Cells (Low/High count)

High levels of somatic cells can be used to study breast health and prevent mastitis.

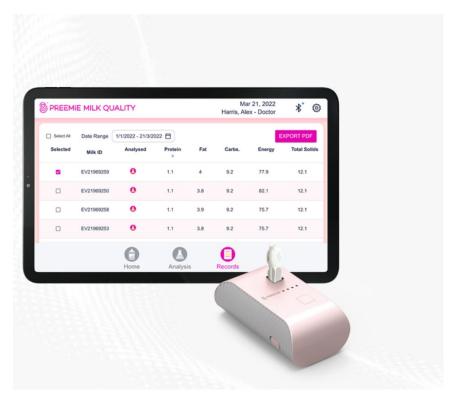

Lactose (grams/100 mL)

The main sugar in milk, it provides most of the energy needed by the growing infant.


Freshness (Fresh/Spoiled)


Total aerobic bacteria count determines the freshness and acceptability of the milk.

Human milk spectrum gby Lipids content



PREEMIE FORTIFICATION

This software app is designed to only work with the Preemie sensor and to be used to test milk composition at the NICU.

- Designed to meet the needs of Neonatal Intensive Care Units for targeted fortification;
- · Analysis of the composition of human milk for nutrition, freshness, and safety;
- Parameters measured: Total Protein, Total Lipids, Lactose, Total HMOs, Energy, Freshness, Somatic Cell Count;
- Automatic calculation of the suggested fortification;
- · Customization of fortification guidelines and fortifiers used;
- Storage of relevant data about infant nutrition and growth in compliance with GDPR;
- · Produces, exports, and saves reports.

SPREEMIE MILK QUALITY

This software app is designed to only work with the Preemie sensor and to be used to test milk composition, freshness, and safety at the HMB.

- · Designed for Human Milk Banks;
- This software works with the Preemie sensor;
- Analysis of the composition of human milk for nutrition, freshness, and safety;
- Parameters measured: Total Protein, Total Lipids, Lactose, Total HMOs, Energy, Freshness, Somatic Cell Count;
- Storage of relevant data about donor milk in compliance with GDPR;
- · Produces, exports, and saves reports.

The Preemie Milk Quality software will be launched in the spring of 2021. Add your name to our list to keep informed of our progress

PREEMIE TRACKER

This software is designed to work with or without the Preemie sensor and to be used to track the infant's nutritional intake and correlate it with the infant's growth at the NICU.

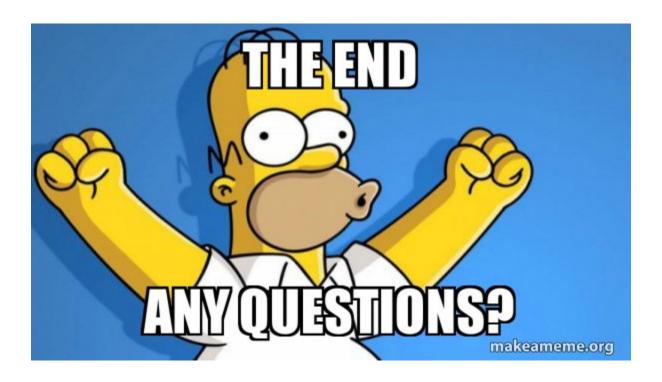
- Designed for Neonatal Intensive Care Units;
- Stand-alone desktop software (does not require the use of the Preemie sensor);
- Comprehensive management of the infant's nutritional intake overtime;
- Correlation of the infant's nutritional intake with growth indicators such as weight, length, and head circumference;
- · Allows digital prescription of fortification on a daily basis;
- · Customization of fortification guidelines and of fortifiers used;
- Personalized introduction to fortification;
- Also works with Fortification app to enable personalized and tracked nutritional intake;
- · Produces, exports, and saves reports;
- Key insights based on metadata.

Request a quote

Download the flyer

SPREEMIE MILK MANAGEMENT

This software is designed to work with or without the Preemie sensor and to be used to manage the donor milk at the HMB.


- · Designed for Human Milk Banks;
- Stand-alone desktop software (does not require the use of the Preemie sensor);
- · Comprehensive management of the donor milk received;
- Stores key data about the donor milk encompassing all the key steps, from reception to storage, up to processing and delivery;
- Suggestion of the best donor milk to be pooled in order to achieve the highest milk quality;
- Generation of nutritional labels for each donor and pooled milk bag;
- Also works with Milk Quality app.

The Preemie Milk Tracker software will be launched in the spring of 2021.

Add your name to our list to keep informed of our progress

THANK YOU FOR YOUR ATTENTION!

you can reach out to me at diogo@tellspec.com ... or at a local craft brewery