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The Physics Question:
Dark Matter



Dark Matter

Multiple scientific evidences indicate that ~85% of the matter content of the universe is Dark Matter (DM)

F. Neves - LIP 3

WIMPS? Axions? …
Chaplygin Gas? Neutrinos? …
Branons? Primordial Black Holes? …
…
…
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The Technological 
Question:

How to Detect
Dark Matter (WIMPs)



How to detect WIMPs?
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The LZ Detector

Schematic of the LZ detector,
a 7 tonne dual-phase Xenon time projection chamber (TPC)

LZ is the successor of LUX, the most sensitive DM direct 
detection experiment from 2013 to 2017.

● Features a 7 tonne dual-phase xenon time 
projection chamber (TPC).

● Ultra-low BG environment within the detector is 
fitting for rare event searches:

○ Direct search of dark matter in the form of 
WIMPs (main goal)

○ Neutrinoless double beta decay
○ CEνNS of solar neutrinos

● Features two active veto systems:
○ LXe “Skin” layer
○ Outer detector (OD) with GdLS

● Will be operated at a depth of 1.5 km in the Sanford 
Underground Research Facility (SURF) in Lead, 
South Dakota (USA)

● … completed its 1st science run! 
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LZ TPC Operating Principle

1. An energy deposition in the LXe produces prompt 
scintillation light (S1) and ionization electrons.

2. The electrons that do not recombine are drifted to the 
liquid-gas interface and extracted into the gas phase, 
creating electroluminescence light (S2)

★ Deposited energy is reconstructed using both the 
S1 and S2 signals.

★ The depth of the interaction can be obtained by the time 
difference between the S1 and S2 signals.

★ The XY position can be reconstructed using the light 
pattern generated by the S2 signal on the top PMT 
array.

We get a full 3D reconstruction of the 
interaction!
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LZ Recorded Event (the data)

An event is recorded as a time series voltage 
response per PMT (channel), aka a “timeline”

Timelines are recorded in 2 gain modes in the 
TPC and OD:  High Gain (HG) and Low Gain 
(LG); And single mode in the Skin detector.

All data presented is simulated, no Monte Carlo 
truth info is available for developers

S1 and S2 pulses are required to fully 
describe an event. However, these are not the 
only pulse types in the data!

● Some originate from known detector 
behaviour (e.g., SE, S2 tails, e-trains, 
SPEs, dark counts, Afterpulsing)

● Some other are a consequence of 
electronic and/or analysis glitches (e.g., 
baselines, oversplitting, merging, etc...)
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Pulses in LZ
S2 pulsesS1 pulses
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Pulses in LZ
S2 pulsesS1 pulses

‣ Short (~100 ns)

‣ Fast rise, slower fall (exponential-like)

‣ Most light captured on bottom PMTs

‣ Typically lower area than S2s

‣ 3 PMT coincidence required

   If coincidence=2 then its a MPE

‣ Long (~5 μs)

‣ Approx. symmetric rise and fall (Gaussian-like)

‣ Most light captured on top PMTs

‣ Lower limit on area defined by single electron size

‣ Typically larger area than S1s
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Pulses in LZ

Afterpulsing
S2 tails

e-trains

Single electron (SE)

SE SplitCoincident SPE

Single Photoelectron (SPE)

baseline
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LZap - LZ Analysis software

Photon 
Counter

*Pulse 
Classifier

Pulse 
Parametrizer

POD Callibrator
POD Summer

*Pulse 
Finder

*Gain 
Matcher

Pulse 
Area 

Corrector

XYZ Pos. 
Corector

Interaction 
Finder

*S2 Position 
Reconstruction

Energy 
Reconstructor

*modules developed and currently maintained by the LIP group

LZap Input: digitized waveforms (DAQ) - pulse only digitization (POD)

LZap Output: high-level reduced quantities (RQs)

The Pulse Classifier module is critical for all subsequent algorithms

Pulse Classifier Input: Pulse parameters from Pulse Finder and Pulse Parametrizer modules.

Pulse Classifier Output: Classifications as probability array for all classes +1 AND discrete class labels.
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Pulse Classifier Input: 17 pulse parameters obtained from the
Pulse Finder and Pulse Parametrizer:

● Pulse area (pA)
● Pulse amplitude (pH)
● Pulse length (pL, pL90 - length at 90% area)
● Prompt fraction (pF) fraction of area at start of pulse: 50, 

100, 200, 500, 1k, 2k and 5k ns
● Top-bottom asymmetry (TBA) = (Atop-Abot)/pA
● Area fraction time (aft) time at X% integrated area: 5%, 

25%, 50%, 75%, 95% area

Classifier Output: Probability vector for all topologies +1: 
[S1, S2, SPE, SE, MPE, Other]

Pulse classification in LZ

pulseLength

pe
ak

A
m

pl

pulseArea

The pulse parameters (data features) are mostly 
geometrical properties of the summed waveform, 
obtained by the Pulse Parametrizer module.

The term “parameter” here is unfortunate, these 
are not adjustable variables of the model!
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Pulse classification in LZ
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Current classifier in LZap is HADES
(Heuristic Algorithm for  Discrimination of Event 
Substructures)

● Heuristic decision tree that is robust and 
easily modified

● Purely categorical and prone to bias
● Uses only 10 features. Estimated 

classification accuracy of 98.6%
● Trained by hand!! More bias…

We want to use Machine Learning to:
● Better understand the data
● Improve HADES
● Maybe develop a better classifier

○ Minimally-biased with high 
classification accuracy
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The Machine Learning Approach
for Pulse Classification in LZ: 

Step 1 - know the data! 
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Step 1: examine the data

This is (arguably) the most important preprocessing step!
● Can inform on what methods may be better or may not work at all!
● May hint at future problems that some algorithms may face
● Check the natural behaviour of the data features (pulse parameters)

Use the tools available to explore the 
data objects and the features (pulse 
parameters)

● Event Viewer (as shown before)
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Step 1: examine the data

This is (arguably) the most important preprocessing step!
● Can inform on what methods may be better or may not work at all!
● May hint at future problems that some algorithms may face
● Check the natural behaviour of the data features (pulse parameters)

Use the tools available to explore the 
data objects and the features (pulse 
parameters)

● Event Viewer (as shown before)

● Histogram available parameters

● Identify distribution’s features
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Step 1: examine the data

This is (arguably) the most important preprocessing step!
● Can inform on what methods may be better or may not work at all!
● May hint at future problems that some algorithms may face
● Check the natural behaviour of the data features (pulse parameters)

Use the tools available to explore the 
data objects and the features (pulse 
parameters)

● Event Viewer (as shown before)

● Histogram parameters

● Identify distribution’s features

● Identify parameters correlations

● etc...
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Step 1: examine the data

● A lot of information can be inferred just by looking at the plots;

● To be absolutely sure, select some pulses and look at the waveforms.
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Step 1: examine the data

Class representativity:

In classification, an algorithm may devote a disproportionate 
amount of attention to more statistically significant populations

● Can be checked via handscanning: large collaborative 
effort involving 50+ people looking at the data

● We can use HADES! The classification accuracy is 
estimated to be at 98.6% from handscans

Found strong asymmetry between classes!!

● SE pulses are dominant (due to e-trains after S2s)

● S1 pulses (and MPE) are misrepresented, troubling!

Misrepresented classes can be seen as outliers and ignored.

Only these 
matter
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Step 1: examine the data

Areas and fraction times are too degenerate!

Correlated attributes reduce discrimination power...

Pulse parameter correlation:

Using strongly correlated features results in little information 
gain when compared to the usage of only one variable

● Some parameters are highly correlated
○ Pulse areas in different time windows
○ Area fraction times and length

● Discard degenerate features?
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Step 1: examine the data

Pulse parameter correlation:

Using strongly correlated features results in little information 
gain when compared to the usage of only one variable

● Some parameters are highly correlated
○ Pulse areas in different time windows
○ Area fraction times and length

● Discard degenerate features?
NO! If possible combine them in useful ways!

○ pFxx = pAxx / pA
○ pL90 = aft95 - aft5
○ H2L = pH / pL90
○ pHTL = pHT / pL90 Lost most degeneracy!

Gained discriminant power while maintaining a 
large parameter space.
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Step 1: examine the data

Is there something else we can do to skim/clean the data?

● Remove outliers not relevant for the problem?
○ data objects that are not associated with the underlying data model.

● Exclude data objects with abnormal features, i.e., data noise, accidentals?
○ miscalculations, transcription errors, poor variable precision, typos, human error, etc…

● Sample biasing?
○ sample weighing,
○ stratified sampling (sampling some parts of the data more than others).

● Curse of dimensionality?
○ Dealing with a small number of features, not really an issue here.

Stop and breathe...
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The Machine Learning Approach
for Pulse Classification in LZ:

Step 2: choose adequate ML methods
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Neural Networks

Neural Networks

Collective of interconnected units (neurons) capable of 
receiving, processing and communicating information with 
each other.

● Strength of connections are adjustable parameters 
(weights)

● Output of a neuron is given by the weighted sum of its 
inputs passed through an activation function

● A system with a relatively small number of neurons can 
display a large complexity

● Feed-forward networks with at least one computational 
layer and activation functions that are squashing 
functions are universal approximators

ŷn = f(xn) 

25.1
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Neural Networks

Neural Networks

Collective of interconnected units (neurons) capable of 
receiving, processing and communicating information with 
each other.

● Strength of connections are adjustable parameters 
(weights)

● Output of a neuron is given by the weighted sum of its 
inputs passed through an activation function

● A system with a relatively small number of neurons can 
display a large complexity

● Feed-forward networks with at least one computational 
layer and activation functions that are squashing 
functions are universal approximators

ŷn = f(xn) 

26.2
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Neural Networks

Stochastic gradient descent with backpropagation

1. Forward pass: From a randomly selected batch of 
labelled training data, compute ŷn = f(xn) with the current 
weights
a. Calculate the total loss L(yn; ŷn)
b. Calculate loss δL for the final layer, L

2. Backward pass: For each hidden layer, starting from the 
last
a. Compute the loss at current layer δL-1 using the loss 

from the previous (following) layer δL 
b. Compute the gradient at current layer

3. Update the weights, moving down the gradient an certain 
amount defined by a learning rate α

4. Repeat until loss converges or rebounds (early stopping)

27
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Neural Networks

Data preprocessing: 
It is important to determine if the input data is in a state that is apt to be handled by the 
model before training begins. Usually we just mean-center and normalize

Pulse Area log centered 
to SE size

Height-to-Length log Pulse Length 90% log 
centered to SE length

x = { log10(pA/80.0) ; pF50 ; pF100 ; pF200 ; pF1k ; TBA ; log10(pL90/1000.0) ; log10(pH) ; log10(H2L) }
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Neural Networks

Tuning of relevant hyperparameters: 
● Learning rate

○ how big are the updates to the 
weights

● Batch size
○ how many samples are used to 

update the model once
● Epochs (training iterations)

○ The number of cycles through all 
training data

● Optimizers
○ Control gradient descent

● Number of hidden layers
● Number of hidden units per layer
● Unit non-linearity

○ activation functions No clear difference (aside from sigmoid+SGD)

Vanishing gradients

good choice (?)

Activation function vs Optimizer

(cat. Cross-entropy)

F. Neves - LIP 29



Neural Networks

Tuning of relevant hyperparameters: 
● Learning rate

○ how big are the updates to the 
weights

● Batch size
○ how many samples are used to 

update the model once
● Epochs (training iterations)

○ The number of cycles through all 
training data

● Optimizers
○ Control gradient descent

● Number of hidden layers
● Number of hidden units per layer
● Unit non-linearity

○ activation functions

Size of the NN

Again, no clear difference

good choice (?)
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Neural Networks

Tuning of relevant hyperparameters: 
● Learning rate

○ how big are the updates to the 
weights

● Batch size
○ how many samples are used to 

update the model once
● Epochs (training iterations)

○ The number of cycles through all 
training data

● Optimizers
○ Control gradient descent

● Number of hidden layers
● Number of hidden units per layer
● Unit non-linearity

○ activation functions
Large α leads to instability, small α to long training times

Good choice would be α = 0.001 and n = 128 (?)

Batch size vs learning rate
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Ensemble Decision Trees

Decision trees

Flowchart-like structures used for decision 
making, categorization and regression analysis.

● Simple set of rules control the flow of data

● Arrange data objects in discrete categories

● Recursive partitioning

○ minimizing an impurity function

A subset of data objects that end in the same 
termination of the tree must have a similar set of 
properties This is a binary DT 

(only one feature used 
per node)

32.1



Ensemble Decision Trees

Decision trees

Flowchart-like structures used for decision 
making, categorization and regression analysis.

● Simple set of rules control the flow of data

● Arrange data objects in discrete categories

● Recursive partitioning

○ minimizing an impurity function

A subset of data objects that end in the same 
termination of the tree must have a similar set of 
properties

HADES is an 
heuristic DT!
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Ensemble Decision Trees

Decision trees
Impurity measure: GINI index

● Differentiable
● Beware of misrepresentation!

Growth and pruning:
● A tree can be grown until all nodes are 

pure nodes
○ Not desirable, probably overfitting

● Limit depth, leaf samples and
split samples

● Pruning: removal of internal decision nodes 
with low separation power
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https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
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Ensemble Decision Trees

Ensemble of trees (forest)
● Trained using weak learnability

● Often use majority vote as global output

● Bootstrap aggregation → Random Forests
○ Each tree is trained with a random subset of data
○ Feature bagging - sample the features each tree can use as well!
○ Out-of-Bag (OOB) sampling

● Boosting → Boosted DTs
○ Sequence of weak learners trained with data weighed with the errors of the 

previous learner

Ensemble methods can be used to estimate feature importance
Interesting way of finding the best discriminant features

Random Forests (RFs) are 
overfitting-resistant!
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Ensemble Decision Trees

The Random Forest Classifier

Input conditioning:
x = { pA ; pF50 ; pF100 ; pF200 ; pF1k ; TBA ; pL90 ; pH ; pHTL ; pRMSW }

● No need to modify the parameters since binary DTs will use simple thresholds
● Extended parameter space in order to study feature importance
● High-dimensional data with nuisance features will hinder performance
● Careful with representativity when bagging!

○ Misrepresented classes can be suppressed in bootstrapped sets
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Ensemble Decision Trees

The Random Forest Classifier: Tuning the 
model

Size of the forest:

● Considered fully grown trees with as little 
as 2 samples per decision node

● Small trees already have decent 
accuracy

● Little accuracy improvement above ~50 
trees

○ Chosen nTrees = 101
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Ensemble Decision Trees

The Random Forest Classifier: Tuning the model

Depth and sample split Chose maxDepth=None and minSamplesSplit=2
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Ensemble Decision Trees

The Random Forest Classifier

Feature Importance:

● Area seems to be the overall strongest 
discriminant, followed by length

● top-bottom asymmetry seems to be less 
important

Are we happy? Is this what we want? NO!

● Feature importance is extremely sensitive to 
asymmetric representation of class labels, 
especially in multi-class problems

● SE abundance highly inflates pulse area 
importance

● Also strongly dependent on correlations
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Ensemble Decision Trees

The Random Forest Classifier

Feature Importance: checking One-vs-All importance (binary classification)

● SE and S2 discriminants are similar, but S1 discriminants are very different!
● Clearly looking at overall importance is not useful...
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Ensemble Decision Trees

The Random Forest Classifier

Permutation Importance: randomly permuting variables in a tree, which is guaranteed to 
reduce the efficiency, and compare the resulting accuracy with the one from the intact tree.

● Yields a misclassification rate that can be interpreted as the overall effect of the variable 
on the accuracy, and thus its importance.

● Can also be performed by noising the variables.

● Accounts for highly correlated variables in the data

● Superior to the previous feature importance score
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Ensemble Decision Trees

The Random Forest Classifier

Permutation Importance: 

● Pulse area and length are the most 
important discriminants, by far

● Clear preference for pF100 over other 
prompt fractions

● Pulse height and TBA are ranked a bit 
higher now

This is a more satisfying result.

But… All parameters can serve a 
purpose in this analysis!
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Credits
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● P. Braz, “Sensitivity to the 0νββ decay of 136Xe and development of Machine Learning tools for pulse 
classification for the LUX-ZEPLIN experiment”, PhD thesis 2020.

● P. Braz, “Machine Learning tools for pulse classification in LZ”, Ciência dos Dados em Física, 2021.



Hands On tutorial
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1. (if you don’t have one already) create a Google account;
2. Download into your computer the jupyter notebook: 

a. DataScience_tutorial.ipynb
3. At your Google Drive create a directory (e.g. DataScience) and save inside:

a. Data_Challenge_1.csv
4. Go to http://colab.research.google.com (register if necessary);

a. Open the DataScience_tutorial.ipynb notebook saved previously;
5.  … start analysing!

a. Instruction on how to access/use Data_Challenge_1.csv are supplied in the notebook.

https://drive.google.com/file/d/1LyUi9Mc7USLWAdXILYK5gazsjwTJped5/view?usp=sharing
https://drive.google.com/file/d/1Ujyiy3aGbaMAFYHEpXBc4DjEiBXNZF4D/view?usp=sharing
http://colab.research.google.com


Challenge
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● Previously, in order to identity the type/class of the pulses registered in LZ using Machine Learning 
(ML), we recur to “classical” pre-processor modules to, for instance:

○ Identified the pulse boundaries (i.e. start and end times) in the timeline;
○ Parameterize each pulse (e.g. area, height);

● But … would it be feasible to extract relevant information from the timeline directly also using ML 
and go without all explicit pre-processing? That’s what we propose you to try with the following 
Challenge!

○ Also, in order to try something different and explore new tools, we will move from a 
categorical to a regression problem/analysis.

● Last, but not least: the LZ detector will also be used for other rare event searches besides Dark 
Matter (or WIMPs). So we also propose to explore something which is relevant for the neutrinoless 
double beta decay (0𝜐2B) searches in LZ , i.e.: 

○ distinguish events corresponding to the emission of 1e- from 2e-in the decay of 136Xe (without 
neutrino).



Challenge
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● A set of synthetic waveforms were generated having 2 S2-lile pulses. For each timeline, the start 
time of the 1st pulse, distance (d) between the 2 pulses, relative height and widths were varied 
randomly within realistic values.

d~0

d~1200d~300



Challenge
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1. At your Google Drive create/reuse a directory (e.g. DataScience) and save inside:
a. input_2x_S2.txt : waveforms
b. output_2x_S2.txt : distance correspondent to a. (d)
c. input_1x_S2.txt : waveforms
d. Output_1x_s2.txt : distance correspondent to c. (d=0)

2. Sug: train a CNN to learn/estimate the distance between 2 pulses:
3. A second set of waveforms with only 1 pulse (c. and d.) was also generated. 

a. Sug: Histogram the response of your model, 
b. Interpret the results. 

Note: the use of a CNN model is suggested but not mandatory. Students are free to explore other methods 
to accomplish the same task. We can later compare the pros/cons of the difference approaches.

https://drive.google.com/file/d/1-VdSai-1ThZOOcKMYPdv0eA9YYd2SALx/view?usp=sharing
https://drive.google.com/file/d/1lavMXj2qzp7KrqMSorliCQTGay2RRCuV/view?usp=sharing
https://drive.google.com/file/d/1rToOP0EnbMuVZ2eMCfv6nfZLWzVV86lB/view?usp=sharing
https://drive.google.com/file/d/1ved0nupn9qWHusX3ETjWFz5RlJxxL1C4/view?usp=sharing


Challenge: CNN (extra)
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2D Convolutional Neural Network (CNN) architecture

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

In  our data, 2D data/filters are 
replaced by 1D (timeline)


