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Biological Inspiration

• Biological neural network
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Artificial neuron

• Neural network as computing machines (McCulloch-Pitts model)
• Perceptrons are based on Linear Threshold Units (LTU)

• A single LTU can be used for simple linear binary classification
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Perceptron

• A Perteptron is made of a single layer of LTUs
• The first type of artificial neural network (ANN)

• Multi-class linear classifier: the decision boundary of each neuron is
linear
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Perceptron

• Single-layer perceptrons only learn linearly separable patterns
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Feed-forward Deep Neural Networks

• Multiple hidden layers increase the representational power of NN
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The math of Neural Networks

Input layer: x(i)

Hidden layer: a
(i)
1 = σ

(
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)
Output layer: ŷ(i) = ϕ
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)

[https://doi.org/10.1190/tle37080616.1]
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The math of Neural Networks
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The math of Neural Networks

Normally, instead of single points, mini-batches of N points are fed into NN
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• The output of a mini-batch is obtained by matrix operations
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Training a NN

• Training the model consists in adjusting the network’ weights to
minimize a cost function

ŵ = argmin
w

C(x,y,w)

• Moving in the direction of negative and large ∇C(x,y,w) (gradient
descent): initialize w to some value w0 and update its value according
to

wt+1 = wt − ηt∇wC(wt)

• To speed up calculations and add stochasticity (low probability of
getting stuck in local minimum), the gradients are approximated on a
subset of data (mini-batch)

∇wC(wt) → ∇wCMB(w) =
∑
i∈Bk

∇wC(xi,w)
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Backpropagation algorithm

• For each training point (or mini-batch), a huge number of derivatives
computations is required.

• Backpropagation is an efficient algorithm that accomplishes
this complex task

Forward propagation step: data is passed through a network to
determine the cost function

Backward propagation step: adjust the model’s parameters to reduce
the cost function
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Forward propagation

• Computational graph for the forward pass

[https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-27be67d8fdce]

1) Z(1) = W(1)X+ b(1)

2) A(1) = σ
(
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)
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)
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Backward propagation

[https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-27be67d8fdce]

∂C
∂W(2)

=
∂C

∂A(2)

∂A(2)

∂Z(2)

∂Z(2)

∂W(2)

• The total derivative is determined from the product of local derivatives
• All information required to compute these local gradients was saved

during the forward pass
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Backward propagation

[https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-27be67d8fdce]
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Notation: batch size, mini-batch, epoch, and iteration

• Consider a dataset with N = 100 points
• By setting a batch size of 20, we are creating 5 mini-batches:

{B1, B2, B3, B4, B5}
• An epoch refers to one cycle through the full dataset
• Having 5 mini-batches, an epoch is completed in 5 iterations.

[https://doi.org/10.3348/kjr.2019.0312]
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Activation functions

• There are different activation functions with specific computational
properties

• Their derivatives’ properties have a crucial impact on training NN
Sigmoid/tanh have vanishing gradients for |x| ≫ 1

[https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092]
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Using DNN: classification problem

• MNIST dataset

D {(x1, y1), (x2, y2), ..., (xN , yN )} ,

where xi is a 2D array of gray-scale and y is the label

• Training set: 60000 images
• Testing set: 10000 images
Márcio Ferreira (CFisUC) Machine learning: Neural Networks 27 - 30 June (2022) 18 / 38



MNIST dataset

• The whole dataset is represented by a 3D array (N ×X × Y )

xijk ∈ Xtrain → [1 : 60000, 1 : 28, 1 : 28] (rank 3 tensor)

• 2D arrays (slices) represent samples (X × Y )

x1jk → [1, 1 : 28, 1 : 28] (rank 2 tensor)

x5jk → [5, 1 : 28, 1 : 28](rank 2 tensor)

• The outut values are in a 1D array (N)

ytrain = {y1, y2, ..., y60000} → [1 : 60000] (rank 1 tensor)

• Their values indicate the class:

y1 = [1] = 5, y2 = [2] = 0, y3 = [3] = 4, ...

• yi are slices (scalars, rank 0 tensors) from the vector ytrain
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A sample from the dataset

• x1jk → [28× 28] (2D array with the gray-scale of each pixel)

• The output space: y1 = 5
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Balanced training set

• We need to check whether the training set is balanced

• The number of observations per class shows small deviations
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Transform data

• We need to reshape the input space

xij ∈ Xtrain → [1 : 60000, 784]

• Each imagine is now represented by a vector of length 784

• Rescale the dataset (normalize the features)

xij → xij/255

• Apply the one-hot encoding to the classes

y = 0 → y =
(
1 0 0 0 0 0 0 0 0 0

)
y = 1 → y =

(
0 1 0 0 0 0 0 0 0 0

)
...

y = 9 → y =
(
0 0 0 0 0 0 0 0 0 1

)
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One-hot encoding

• Our initial y variables contained label values {0, 1, ..., 9} rather than
numeric values

• One-hot encoding ensures that our model does not consider higher
numbers to be more important

• yij ∈ ytrain → [1 : 60000, 10] (2D array, rank 2 tensor)

Márcio Ferreira (CFisUC) Machine learning: Neural Networks 27 - 30 June (2022) 23 / 38



Define the NN model (using Keras in R)

• Softmax function: P (y = j | x) = ex
Twj∑K

k=1 e
xTwk

Network output: (P0, P1, P2, P3, P4, P5, P6, P7, P8, P9)
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Setting a batch size

• Mini-batches of size 128
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Compile the NN model

• Categorical crossentropy (loss function): how distinguishable two
discrete probability distributions are

L(W) = −
9∑

i=0

yi · log ŷi(W)

W represents all the (235146) NN weights

• Adam Optimizer [several available: SGD, RMSprop,...]

• Metric: the fraction of the images correctly classified (accuracy)
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Training the NN model

• Randomly split the train dataset (60000 images):

80% for training and 20% for validation

• 30 epochs: number of times the entire training set (48000 images) will
pass through the NN

• Mini-batches of size of 128:

Xin → {[1 : 128, 784], [129 : 257, 784], ....}

• Each epoch has 48000/128 = 375 iterations
number of times the W are updated in each epoch

Márcio Ferreira (CFisUC) Machine learning: Neural Networks 27 - 30 June (2022) 27 / 38



Output of the training stage

• Do we understand the meaning of all these numbers?
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Deep Neural Networks with keras

• Graphical representation of the learning stage
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Out-of-sample performance of the model

• The final model’s performance is measured on the test set

10000 images

• Accuracy of 98% (the model correctly classifies 98 out of 100 figures)

• The evaluate() function uses batches (default size of 32) just to
speed-up evaluation (10000/32=312.5)
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Model output

• Model predictions
• Last layer: (P0, P1, P2, P3, P4, P5, P6, P7, P8, P9)

• Dataset values
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Confusion Matrix

• Summary of prediction results
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Regularization for NN: dropout

• The dropout layer prevents overfitting by randomly assigning
neurons to 0 at each step during training with a given frequency.

• dropout rate = 0.5: half of the neurons excluded from each update
iteraction.

https://jamesmccaffrey.wordpress.com/2018/05/11/neural-network-library-dropout-layers/
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Adding dropout to the model

• Adding dropout layers
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Compare models (with/without dropout)
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Models’ performances

• Evaluation both models in the test set (10000 digits)

• Without dropout:
accuracy = 0.9801000

• With dropout:
accuracy = 0.98119998

• Human error rates around 2–2.5% (accuracy 97.5-98%)
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Next lectures ...
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