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AI and Machine learning

Artificial intelligence (AI) (1950s) comprises a great variety of
sub-fields from science to engineering.

Understand the basis of human intelligence and replicate it on
intelligent entities.

Machine learning (ML) is a sub-field of AI:
Are computers able to perform a specific task by automatically
learn the required rules from data?

Instead of being explicitly programmed, ML systems are trained.
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Machine learning: different types

Supervised learning: learns from label data
Unsupervised learning: finds patterns in unlabeled data
Reinforcement learning: learning system interacts with the
environment and takes suitable actions to maximize reward in a
particular situation.
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Supervised machine learning: dataset

We need data

D = [(y1,x1), (y2,x2), · · · , (yN ,xN )]

where y/x are the dependent/independent variables
Handwritten digits (MNIST) [classification]
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Supervised machine learning: model

A model y = f(w,x) ≡ fw(x) is a map between elements in the
input and output spaces

fw : x −→ y

where y/x are the dependent/independent variables
We have a model once w is fixed (the map is defined)
Linear models (linear in w)

f(w, x) = b+ w1x1 + ....+ wnxn = w · x

Class of linear models [model complexity]

y = f1(w, x) = w1x+ b [all polynomials of order 1]

y = f2(w, x) = w1x+ w2x
2 + b [all polynomials of order 2]

y = f5(w, x) = w1x+ w2x
2 + ...+ w5x

5 + b [all polynomials of order 5]
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Supervised machine learning: model’s performance

Cost function measures the deviation between the model’s
predictions and the true values

C(y, ŷ(x;w))

Regression problems: mean squared error (MSE)

C(y, ŷ) = 1

N

N∑
i=1

(yi − ŷ(w, xi))2 (training dataset)

Loss function (squared error):

li = (yi−ŷ(w, xi))2 = ϵ2i (single point)

C(y, ŷ) = 1

N

N∑
i=1

li =
1

N

N∑
i=1

ϵ2i
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Supervised machine learning: training

Training a model: finding the values w∗ that minimizes the cost
function

w∗ = argmin
w

C(y, ŷλ(w, x))

We are minimizing the mean residuals

w∗ = argmin
w

1

N

N∑
i

(ϵi(w))2
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Finding predicting models: data splitting

Randomly split your dataset:

Train set: Dtrain (%80 of D)

Test set: Dtest (%20 of D)

Randomly split Dtrain:

Train set: Dtrain (%80)

Validation set: Dval (%20)

Train set: train your candidate models

Validate set: select the best model among the candidate models

Testing set: evaluate the real accuracy of the best model
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Several candidate models: finding the best model

Train the different models ŷ1, ŷ2, ŷ3, ..., ŷk in Dtrain

C(y, ŷ) = 1

J

J∑
i=1

(ytraini − ŷλ(wλ, xtraini ))2

Find the best parameters wλ
∗ for each model λ

wλ
∗ = argmin

wλ

C(y, ŷλ(wλ, x))

Select the best model ŷλ in Dval

C(y, ŷ) = 1

L

L∑
i=1

(yvali − ŷλ(wλ
∗ , x

val
i ))2
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Performance of the final model

Determine the final performance of the best model in the Dtest

C(y, ŷ) = 1

T

T∑
i=1

(ytesti − ŷmodel(w∗, xtesti ))2

Unseen data: neither used in the training nor in validating stages
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In-sample and out-of-sample errors

The model in-sample error is

Ein = C(ytrain, ŷ(ŵ,xtrain)) =
1

K

J∑
i=1

(ytraini − ŷ(ŵ, xtraini ))2

The model out-of-sample error is

Eout = C(yval, ŷ(ŵ,xval)) =
1

M

M∑
i=1

(yvali − ŷ(ŵ, xvali ))2

In general Eout ≥ Ein

The random split of D into Dtrain and Dval ensures an unbiased
estimate of the model’s performance (cross-validation)
We select the model with lowest Eout
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Why do we need random splitting?
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Linear regression

Assume the following generating process (synthetic dataset)

y(x) = sin(2πx) + η

Gaussian noise simulates real data:

η ∼ N (0,0.2) −→ ⟨η⟩ = 0 and ⟨ηiηj⟩ = 0.2δij

N = 15 "observations" uniformly spaced in [0, 1]
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x

y

Dtrain : {(x1, t1), (x1, t1), · · · , (x10, t10)}
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Linear regression

Goal of ML: learning the underlying process [sin(2πx)] from Dtrain

Select a class model (polynomial function of order M):

ŷM(x,w) = w0 + w1x+ w2x
2 + ...+ wMxM

Linear model: yM (x,w) is linear in w

Define a cost function:

C(w) =
1

N

N∑
n=1

[ŷM(x,w)− yn]
2 (MSE)

YM(x)
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Linear regression: learning process

Learning processes: determining w that minimizes C(w)

Closed-form solution: derivatives ∂C
∂w are linear in w

w∗ =
(
XTX

)−1
XT y (ordinary least squares)

Our fitted models still depends on M :

yM (x,w∗) with w∗ ≡ w∗(M)

Model selection: choose the polynomial’s order M that best fits data
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Linear regression: overfitting/underfitting

M = 1
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Underfitting: y1(x) is a poor representation
Overfitting: y14(x) is a poor representation (Ein = 0). Why?
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Linear regression: model’s generalization

However, we are interested in Eout

a measure of the generalization capacity of the model, i.e., making
accurate predictions for unseen data

How does Eout depend on M?

We generate a validation set with K = 120 points

We use the root-mean-square error (RMSE)

ERMSE =
√

MSE =

√√√√ 1

K

K∑
n=1

(ŷn − yn)2 (models’ accuracy)

ERMSE has the same units and scale as the target variable y
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Linear regression: cross-validation

Train set

Validation set
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Linear regression problem: dataset’s size

Effect of the dataset size

M= 11

N= 20
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Over-fitting becomes less severe as N grows (fixed model complexity)
However, the model’s complexity should be chosen according to the
complexity of the problem and not the data set size
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Regularization technique I

Regularization controls the overfitting phenomena by adding a penalty
factor in the cost function

C̃(w) =
1

2

n∑
n=1

[yM (x,w)− yn]
2 +

λ

2
||w||2

with ||w||2 = wTw = w2
0 + w2

1 + ...+ w2
N

λ controls the amount of penalty [OLS solution for λ = 0]

Required when complex models are applied to small datasets
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Regularization technique II

λ controls the effective complexity of the models and the degree
of over-fitting

Use cross-validation to select the best λ

Train set

Validation set
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What is the best model (value of λ) and why?
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Common regression regularizations

Ridge regression (L2):
ŵR = argmin

w

{
||Xw −Y||2 + λ||w||2

}
ŵR = argmin

w
||Xw −Y||2, subject to: ||w||2 ≤ t

LASSO regression (L1):
ŵL = argmin

w

{
||Xw −Y||2 + λ||w||1

}
ŵL = argmin

w
||Xw −Y||2, subject to: ||w||1 ≤ t

[A high-bias, low-variance introduction to machine learning for physicists., Mehta, Pankaj, et al.]

ŵ = argmin
w

||Xw − Y||2,

LASSO tends to give sparse solutions
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Regression regularizations: Ridge vs LASSO

Model: y5(x)
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Statistical learning theory: Bias-Variance decomposition

We run an experiment and collect a dataset Di = (x, y)

The system’s dynamics is governed/generated by y = f(x) + η

Our model is given by f(x, ŵDi
)

ŵDi
= argmin

w
C(w) = argmin

w

M∑
n=1

[f(xn,w)− yn]
2

• ŵDi
is a function of the dataset Di

Performing N times the experiment (M samples): D1,D2, ...,DN

We obtain N models: ŵD1 , ŵD2 , ..., ŵDN
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Statistical learning theory: Bias-Variance decomposition

An unbiased estimate of a model’s uncertainty must consider all
possible datasets ŵDi

and realizations of the noise η

The out-of-sample (generalization) error is

Eout = ED,η [C(y, f(x, ŵD))]

= ED,η

[
N∑

n=1

[yn − f(xn, ŵD)]
2

]
= Bias2 + Variance + Noise
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Statistical learning theory: Bias-Variance decomposition

Bias =
∑
n

(y(xn)− ED [f(xn, ŵD)])

deviation of the model’s asymptotic prediction from the true value

Variance =
∑
n

ED

[
(f(xn, ŵD)− ED [f(xn, ŵD)])2

]
how much our model fluctuates around its mean (finite-sample effects)

Noise =
∑
n

σ2
η

irreducible error (lower bound on Eout)
As the model’s complexity increases, it captures more complex
patterns decresing the bias.
On the other hand, the model’s predictions strongly fluctuates as its
complexity increases when trained in different sets.
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Bias-Variance decomposition

Model: ŷM (x,w) = w0 +w1x+ · · ·+wMxM [y(x) = sin(2πx) + η]
"Repeating the experiment" 10 times: D1,D2, ...,D10

We obtain 10 models: ŵD1 , ŵD2 , ..., ŵD10
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Bias-Variance decomposition

Color lines: The fitted models ŷM (ŵD1), ŷM (ŵD2), · · · , ŷM (ŵD10)
Solid line: ED [ŷM (x,ŵD)] (mean value of our estimator)
Dashed line: y(x) = sin(2πx)
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Bias-Variance decomposition
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]
︸ ︷︷ ︸

Variance
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Bias-Variance decomposition
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]
︸ ︷︷ ︸

Variance
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Bias-Variance decomposition
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Bias-Variance decomposition

M=6
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Bias-Variance decomposition

The role of the model’s complexity for finite amount of data

Eout
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Training a ML model: convex problem

Optimization problem for linear models [ŷ(w, x) = w.x]

w∗ = argmin
w

C(y, ŷ) = argmin
w

1

N

N∑
i=1

(yi − ŷ(w, xi))2

As C is quadratic in w with positive-definite Hessian

wTHw > 0, where Hij = ∇wi∇wjC

we have a convex problem: C has a global minimum at w∗

OLS solution (∇wC = 0)

w∗ =
(
XTX

)−1
XT y
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Training a ML model: non-convex problem

However, ML models usually have complex non-convex cost
functions in a high-dimensional space with many local minima.

[https://www.cs.umd.edu/ tomg/projects/landscapes/]

There is no closed-form solution and gradient descent algorithms
are used to numerically search the solution.
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Gradient descent methods

Gradient descent method: solves the optimization problem

ŵ = argmin
w

C(x,y,w)

by adjusting w, in successive iterations, in the direction where
∇C(x,y,w) is large and negative (steepest descent)
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Gradient descent algorithm

Initialize w to some value w0 and update its value according to

vt = ηt∇wC(wt)

wt+1 = wt − vt

The learning rate ηt (step size) is a sensitive parameter:
Too many steps for low ηt values
It may oscillate and diverge for high ηt values
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Gradient descent algorithm

GD is a deterministic algorithm

C(w) =

N∑
i=1

C(yi,xi,w)

The surface C(w) is fixed for a given dataset.

{(x1,y1), ..., (xN,yN)}

Drawbacks of GD:
Converges to local minimum (when it converges)
Sensitive to the value of w0

Sensitive to ηt
All directions of w space are equally treated
Computationally expensive for large datasets
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Newton’s method

How can GD algorithm be improved?
Make ηt sensitive to local surface properties of C(wi)

Newton’s method (second-order Taylor expansion)

C(w + v) ≈ C(w) +∇wC(w)v +
1

2
vTH(w)v

Update rules

vt = H−1(wt)∇wC(wt)

wt+1 = wt − vt

The learning rate ηt(wt) = H−1(wt) adjusts the different
parameters’ step sizes depending on the Hessian matrix:

Larger steps in flat directions (small curvature)
Smaller steps in steep directions (large curvature)

However, the Hessian is expensive to compute.
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Stochastic Gradient descent algorithm

Stochastic Gradient descent algorithm: adding stochasticity
The full gradients are approximated on a mini-batch (subset of data)
A step in SGD is determined on a single MB as

∇wCMB(w) =
∑
i∈Bk

∇wC(xi,w)

The SGD algorithm

vt = ηt∇wCMB(wt)

wt+1 = wt − vt

An epoch is a full iteration over all MB (all data points)
The use of MB speeds up calculations and reduces the probability of
getting stuck in local minimum or saddle points.
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Adding momentum to SGD

Introducing a momentum term

gt = ηt∇wCMB(wt)

vt = γvt−1 + gt

wt+1 = wt − vt

where 0 ≤ γ < 1 is the moment parameter.
vt is a running average (memory of the moving direction)

vt = gt + γgt−1 + γ2gt−2 + γ3gt−3 + · · · (time scale of 1/(1− γ))

Algorithm speeds up in directions with persistent gradients and
suppresses oscillations in high-curvature directions
Accumulated gradients will help to avoid saddle points
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RMSprop algorithm

How to have an adaptive ηt without the computationally price of
calculating the Hessian?

The RMSprop algorithm tracks the gradient second momentum to
normalize ηt

gt = ∇wCMB(wt)

st = βst−1 + (1− β)g2
t

wt+1 = wt − ηt
gt√
st + ϵ

β controls the scale time of the second momentum (β ≈ 0.9) and
ϵ ∼ 10−8 is a regularization term
The learning rate ηt/

√
st + ϵ decreases in directions where gt is

consistently large
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ADAM algorithm

The ADAM algorithm tracks of first and second momentum of gt

gt = ∇wCMB(wt)

mt= β1mt−1 + (1− β1)gt [momentum]

st= β2st−1 + (1− β2)g
2
t [RMSprop]

m̂t =
mt

1− (β1)t
[bias correction]

ŝt =
st

1− (β2)t
[bias correction]

wt+1 = wt − ηt
m̂t√
ŝt + ϵ

[RMSprop+momentum]

The equations m̂t and m̂t correct the effect of m0 = s0 = 0

ADAM is a combination of RMSProp and SGD with momentum.
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Algorithm comparison

gif1 gif2

The SGD algorithm is usually sufficient for simple models.
SGD+momentum and RMSprop are good options to increase the
model accuracy.
For complex ML models, like deep neural networks, the ADAM
algorithm is quite popular and the standard one.
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Conclusions

Basic concepts of supervised machine learning
Split of the dataset: train, validation, and test
Regularization techniques (L1 and L2): control the model’s complexity
Bias-variance composition: tension between bias and variance terms
Different gradient descent algorithms:

Stochasticity (SGD)
Momentum (SGD + momentum)
Adaptive learning rate (RMSporp and ADAM)

Next lecture: Deep Neural Networks
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