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Al and Machine learning

o Artificial intelligence (Al) (1950s) comprises a great variety of
sub-fields from science to engineering.

o Understand the basis of human intelligence and replicate it on
intelligent entities.

@ Machine learning (ML) is a sub-field of Al:

e Are computers able to perform a specific task by automatically
learn the required rules from data?

@ Instead of being explicitly programmed, ML systems are trained.

</> Classical
Programming
@ Machine
@ Learning
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Machine learning: different types

@ Supervised learning: learns from label data
e Unsupervised learning: finds patterns in unlabeled data

@ Reinforcement learning: learning system interacts with the
environment and takes suitable actions to maximize reward in a

particular situation.
Machine Learning
Supervised Unsupervised Reinforcement
Learning Learning Learning

|~ 2 ',
o-0 =
Task Driven Data Driven Learning from
(Classification/Regression) (Clustering) mistakes
(Playing Games)
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Supervised machine learning: dataset

@ We need data

D= [(y1,X1)> (Y27X2)7 T ,(yN,XN)]

where y/x are the dependent/independent variables
Handwritten digits (MNIST) [classification]

label = 5 label = 0 label = 4 label = 1 label = 9

[Regression]
T X y z l,{ /
1: §.000000 1.600000 1.080000 1.606000 ;

1
2: B.727273 1.090509 1.090909 1.050909
9.454545 1.181818 1.181818 1.181818 label = 2 Jabel = 1 label = 3 Jabel = 1 Jabel
10.181818 1.272727 1.272727 1.272727
1
1

N

=4
5: 10.909091 1.363636 1.363636 1.363636
6: 11.636364 1.454545 1,454545 1.454545
C T x y z
: 6.6016000 8.006000 1.600000 1.600000 1.000600
8.6556364 8.727273 1.690909 1,090909 1.0696969 label = 3 label = 5 label = 3 label = 6 label = 1

1

1
0.7102727 9.454545 1.181818 1.181818 1.181818 . .
6.7649091 10.181818 1.272727 1.272727 1.272727 3 d 3
0.8195455 10.909091 1.363636 1.363636 1.363636

1

: 0.8741818 11.636364 1.454545 1,454545 1.454545

awm s wN e
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Supervised machine learning: model

@ A model y = f(w,x) = fw(x) is a map between elements in the
input and output spaces

fw:ix—y

where y/x are the dependent/independent variables
@ We have a model once w is fixed (the map is defined)

@ Linear models (linear in w)
f(w,x) =b+wiz); + ... + wpzy, = W- X
o Class of linear models [model complexity]

y= fi(w,x) =wiz+b [all polynomials of order 1]
y = fo(w,x) = wiz + wor® + b [all polynomials of order 2]

y = fs(w,x) = w1 +wex?® + ... + wsz® + b [all polynomials of order 5]
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Supervised machine learning: model’s performance

@ Cost function measures the deviation between the model’s
predictions and the true values

Cly, §(x;w))

@ Regression problems: mean squared error (MSE)

Cly,y) = N Z(yi —§(w,x;))?  (training dataset)
i=1

@ Loss function (squared error):

li = (yi—j(w,x;))? = € (single point)

residual

N N
. 1 1 9 . e = (i
C(YJ):NE ZZ:NE € ,
i=1 i=1 i
-4 -2 0 2 4
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Supervised machine learning: training

e Training a model: finding the values w, that minimizes the cost
function
w, = argmin C(y, yx(w, x))

w

@ We are minimizing the mean residuals

N

.1 2
w. = argmin 3 ((w))

residual

& = (v — )
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Finding predicting models: data splitting

@ Randomly split your dataset:

Available Data

o Train set: Dyirgin (%80 of D)
o Test set: Dyesr (%20 of D) Training Testing

New Available Data

e Randomly split Dyqin:

Training Validation Testing

o Train set: Dyyain (%80) ‘ | ’ ‘
o Validation set: D,q; (%20)

e Train set: train your candidate models
o Validate set: select the best model among the candidate models

o Testing set: evaluate the real accuracy of the best model
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Several candidate models: finding the best model

@ Train the different models 41, 92, 93, ..., g IN Dirain
J

1 _— .
Cly ) = 5 Do = Ga(w x7em))?
=1

o Find the best parameters w; for each model \

w; = argmin C(y, §(w",x))

w
o Select the best model 3, in D,y
1

Cly.§) = + S ™ — da(w, xp*))?
=1
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Performance of the final model

@ Determine the final performance of the best model in the Dy

T

. 1 .
C(y7 y) = T Z(yfest - ymodel(w*a Xz;est))Z
=1

@ Unseen data: neither used in the training nor in validating stages
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In-sample and out-of-sample errors

@ The model in-sample error is
1 . .
Eip, = C(Ytraina S’(W, Xtrain)) = ? Z( f?‘azn — Q(\;V, XIZ?MLM))2
i=1
@ The model out-of-sample error is
M
Fouwt = C¥uat: 390, Xat)) = 7= (00 = (3 xi)?
i=1
@ In general Eoyt > Ei,
@ The random split of D into Dyyqin and D, ensures an unbiased

estimate of the model's performance (cross-validation)

@ We select the model with lowest Eq,;
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Why do we need random splitting?

Validation set (20%) -~ 2% .
i0-  Train set (80%) o * 10- . . .
ol o ol 0
o o . ., . .
5 — 5 S
5 & .
> . . ° 5 > o e~ . >
o . - .
. . . ‘et o © . R .
5 .. 5- . - . * .
0.y d 24 49 ©0 .
10 T -10 I 5 §
0 50 100 150 0 50 100 150 50 100
X X X
Validation set (20%) -~ -~
10- Train set (80%) e 10 . 10- s
o~ . -~ .
5 — : 5- " - 5
g 9 o . 5 9 . .
b .
. P . . r -
> 0 n- .l - . > o ,\. .- - > a .
e’ . - o’ o | &
5 —1s . -5- <. 5 .
. a
. . . .
-t - -t .
10 = 10 ks 10
0 50 100 150 0 50 100 150 0 50 100 150
x X X
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Linear regression

@ Assume the following generating process (synthetic dataset)
y(x) =sin(2mz) + 1
e Gaussian noise simulates real data:
n~N(0,0.2) — (n) =0 and (n;n;) = 0.25;;

e N =15 "observations" uniformly spaced in [0, 1]

1- .
> 0- —
- >~ ¢
0.0 05 1.0
X
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Linear regression

e Goal of ML: learning the underlying process [sin(27z)] from Dipgin

@ Select a class model (polynomial function of order M):

yMm(x, W) = wy + wix + wox® + ... + wppx™

o Linear model: yps(x, w) is linear in w

@ Define a cost function:

N
1 .
C(w) =+ S [Fmbw) — g2 (MSE)

n=1

1.0- 1, Yu(x)

0.5' ° 5 0

> 00' ) 1
0.5- = d]
1.0- s -
0.0 0.5 1.0

Marcio Ferreira (CFisUC) Machine learning: an introduction 27 - 30 June (2022)

16 /47



Linear regression: learning process

e Learning processes: determining w that minimizes C(w)

@ Closed-form solution: derivatives gc are linear in w

- (x7x)”"

XTy  (ordinary least squares)
@ Our fitted models still depends on M:
yu(z,w*) with w*=w*(M)

@ Model selection: choose the polynomial’s order M that best fits data
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Linear regression: overfitting/underfitting

M=5
1-
> > 0 9
-1-
0.0 0.5 1.0 0.0 0.5 1.0
X X
M = 14
1-
//\
> > 0-
1 \-r
0.0 0.5 1.0 0.0 0.5 1.0
X X

e Underfitting: y;(z) is a poor representation
e Overfitting: y14(x) is a poor representation (Fy, = 0). Why?
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Linear regression: model’s generalization

@ However, we are interested in Egut

e a measure of the generalization capacity of the model, i.e., making
accurate predictions for unseen data

@ How does E,,: depend on M7
o We generate a validation set with K = 120 points

o We use the root-mean-square error (RMSE)

K
1
_ _ A 2 )
Ermse = VMSE = 7 E (9 — yn)? (models" accuracy)

n=1

e FERrmse has the same units and scale as the target variable y
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Linear regression: cross-validation

2.5-
2.0- Validation set
& 1.5 Train set

=10
0.5-
0.0- ! ————
5 10
M

@ What is the best model and why?
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Linear regression problem: dataset’s size

o Effect of the dataset size

@ Over-fitting becomes less severe as N grows (fixed model complexity)

@ However, the model's complexity should be chosen according to the
complexity of the problem and not the data set size
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Regularization technique |

@ Regularization controls the overfitting phenomena by adding a penalty
factor in the cost function
5 RS 2 A2
C(w) = B Z lymi (2, W) — yn]” + §HWH
n=1

with |[[w]? = wiw = wi + w? + ... + vk
@ )\ controls the amount of penalty [OLS solution for A = 0]

@ Required when complex models are applied to small datasets
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Regularization technique |l

@ ) controls the effective complexity of the models and the degree

of over-fitting

@ Use cross-validation to select the best \
0.3- Validation set
0.2-
0.0- ¢ : : k k \ |
20 -18 -16 -14 -12 -10 -8
In(A)

L
%)
=
o

e What is the best model (value of \) and why?
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Common regression regularizations

e Ridge regression (Ls):
Wgr = argmin {||Xw — Y|+ )\HW||2}

Wr = argmin || Xw — Y||?, subject to: ||w]||* < ¢
w

@ LASSO regression (L1):
Wi = argmin {||Xw — Y2+ )\Hw||1}

Wi, = argmin || Xw — Y||?, subject to: ||w]||" <t
w

W = arg min || Xw — Y||?,
w

LASSO Ridge

[A high-bias, low-variance introduction to machine learning for physicists., Mehta, Pankaj, et al.]

@ LASSO tends to give sparse solutions
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Regression regularizations: Ridge vs LASSO

e Model: y5(x)

Lambda Lambda
0.0067 3.1e-07 0.0067 3.1e-07
| | I Lya | | | L4
o x1
X3
0O o= x5 %)
C ey
.0 ©
S S
= o =
o T © 2
o o
(&) O
] o
T T T 1 | | | 1
5 10 -15 20 5 10 -15 20
Log Lambda Log Lambda
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Statistical learning theory: Bias-Variance decomposition

@ We run an experiment and collect a dataset D; = (x, y)

o The system's dynamics is governed/generated by y = f(x) + 7

@ Our model is given by f(x,Wp,)

Wwp, = argminC(w) = arg min Z (X, W) — yn)?

e Wp, is a function of the dataset D;

@ Performing N times the experiment (M samples): Dy, Do, ..., DN

e We obtain N models: Wp,,Wp,, ..., WDy
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Statistical learning theory: Bias-Variance decomposition

@ An unbiased estimate of a model's uncertainty must consider all
possible datasets Wp, and realizations of the noise 7

@ The out-of-sample (generalization) error is

Eout = ED,I/ [C(y, f(X7 VAVD))]
N

=Ep, Z [Yn — f(xn,WD)]2

n=1

= Bias? + Variance + Noise
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Statistical learning theory: Bias-Variance decomposition

Bias = Z (y(zn) — Ep [f(Xn, WD)])

n

deviation of the model's asymptotic prediction from the true value

Variance = Z Ep [(f(Xn,WD) —Ep [f(Xn’WD)])Q]

how much our model fluctuates around its mean (finite-sample effects)
o 2
Noise = Z o,
n

irreducible error (lower bound on Eqyt)

@ As the model's complexity increases, it captures more complex
patterns decresing the bias.

@ On the other hand, the model's predictions strongly fluctuates as its
complexity increases when trained in different sets.
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Bias-Variance decomposition

e Model: gas(z,w) = wo +wiz + - +wyz™  [y(z) = sin(27z) + 7]

o "Repeating the experiment” 10 times: Dy, D, ..., D1g
@ We obtain 10 models: Wp,,Wp,, ..., Wp,,

2 M=2 WD1 2 M=2 WD2

00 05 1.0 15 20 00 05 1.0 15 20

2 M=2 WD3

-2

-2

00 05 1.0 15 20 00 05 1.0 15 20
X X
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Bias-Variance decomposition

@ Color lines: The fitted models yar(Wp, ), 9ar(Wpy), -+, Y (Wpy,)
e Solid line: Ep [gas(x wp)] (mean value of our estimator)
@ Dashed line: y(x) = sin(27x)

M=2 M=2
2 2
SN
> 0- e
2 -2
00 05 10 15 20 00 05 1.0 15 20
X X
Ep |(9a(z,0p) — Ep [§m(x, Wp)])* y(z) — Ep [ym(x, Wp)]
Bias

Variance
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Bias-Variance decomposition

00 05 1.0 15 20 00 05 1.0 15 20
X X

Ep |(7as(w,00) — Bo [jm(x.¥))’]  y(@) ~ Ep [ym(x, )]
Variance Bias
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Bias-Variance decomposition

M=4 M=4
2|

00 05 10 15 20 00 05 10 15 20
X X

y(z) — Ep [§m(x, Wp)]

Bias

Variance
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Bias-Variance decomposition

00 05 10 15 20 00 05 10 15 20
X X

y(z) — Ep [§m(x, Wp)]

Bias

Variance
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Bias-Variance decomposition

10 15 20

X

0.0 05

y(z) — Ep [§m(x, Wp)]

Bias

Variance
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Bias-Variance decomposition

@ The role of the model's complexity for finite amount of data

Eout

Variance

Error
Optimum Model Complexity

o

A J

Model Complexity
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Training a ML model: convex problem

e Optimization problem for linear models [(w, x) = w.x]

w* =argmin C(y,¥) = argmm — 7w, x;))?

w

||Mz

@ As C is quadratic in w with positive-definite Hessian
wl Hw > 0, where Hij =V, Vy,C

@ we have a convex problem: C has a global minimum at w*

e OLS solution (VC = 0)

-1

= (XTX) X'y
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Training a ML model: non-convex problem

@ However, ML models usually have complex non-convex cost
functions in a high-dimensional space with many local minima.

Renset-56 VGG-56

[https://www.cs.umd.edu/ tomg/projects/landscapes/]

@ There is no closed-form solution and gradient descent algorithms
are used to numerically search the solution.
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Gradient descent methods

o Gradient descent method: solves the optimization problem

w = argminC(x,y,w)
w

by adjusting w, in successive iterations, in the direction where
VC(x,y,w) is large and negative (steepest descent)

SR
Sy,
s

RS AL T
eSS Sty
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Gradient descent algorithm

@ Initialize w to some value wg and update its value according to

Vi =Tk VWC(Wt)

Wil = Wi — Vi

@ The learning rate 7 (step size) is a sensitive parameter:

e Too many steps for low 7; values
e It may oscillate and diverge for high n; values

C(w) m is small C(w) m is large
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Gradient descent algorithm

@ GD is a deterministic algorithm

N
C(w) = Clyi,xi, W)
=1

@ The surface C(w) is fixed for a given dataset.

{(X17y1)7-”7 (XN,YN)}
o Drawbacks of GD:

Converges to local minimum (when it converges)

Sensitive to the value of wy

o

o Sensitive to 7,

o All directions of w space are equally treated
o

Computationally expensive for large datasets
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Newton's method

How can GD algorithm be improved?
@ Make 7 sensitive to local surface properties of C(wj)

@ Newton's method (second-order Taylor expansion)
1
C(w+v)=C(w)+ VuC(w)v + §VTH(W)V

@ Update rules

Vi = Hil(Wt)va(Wt)

Wil = Wy — Vg

@ The learning rate 7y (wt) = H™!(w¢) adjusts the different
parameters’ step sizes depending on the Hessian matrix:

o Larger steps in flat directions (small curvature)
o Smaller steps in steep directions (large curvature)

@ However, the Hessian is expensive to compute.
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Stochastic Gradient descent algorithm

Stochastic Gradient descent algorithm: adding stochasticity

The full gradients are approximated on a mini-batch (subset of data)

A step in SGD is determined on a single MB as

VwC"B(w) = > VuC(xi,w

1€By

The SGD algorithm

vi = 7V CVB (wy)

Wiyl = Wi — Vi

An epoch is a full iteration over all MB (all data points)

The use of MB speeds up calculations and reduces the probability of
getting stuck in local minimum or saddle points.
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Adding momentum to SGD

@ Introducing a momentum term

8t = TZtvaMB(Wt)
Vi ="YVi_1+ &t
Witl = Wy — Vi

where 0 < v < 1 is the moment parameter.

@ vy is a running average (memory of the moving direction)
Vi =g +781+7 82+ g3+ (timescale of 1/(1—7))

@ Algorithm speeds up in directions with persistent gradients and
suppresses oscillations in high-curvature directions

@ Accumulated gradients will help to avoid saddle points
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RMSprop algorithm

How to have an adaptive 1; without the computationally price of
calculating the Hessian?

@ The RMSprop algorithm tracks the gradient second momentum to
normalize 7,

gt = VWCMB(Wt)

st = fsi—1+ (1 — 5)&2
8t

St + €

@ [3 controls the scale time of the second momentum (3 ~ 0.9) and
e ~ 1078 is a regularization term

@ The learning rate 7;/\/s; + € decreases in directions where g; is
consistently large
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ADAM algorithm

o The ADAM algorithm tracks of first and momentum of g;

8t = VWCMB(Wt)

my= fimy_1 + (1 — B1)g: [momentum]

[RMSprop]
~ my . .
my = ———  [bias correction
~ St . .
S = ——— bias correction
TGy | ]
e [RMSprop+momentum]

Wt+1=Wt—77t\ﬁ
St + €

@ The equations 1y and ry correct the effect of mg =s9 =0
@ ADAM is a combination of RMSProp and SGD with momentum.
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Algorithm comparison

[ gifl gif2 ]

@ The SGD algorithm is usually sufficient for simple models.

@ SGD+momentum and RMSprop are good options to increase the
model accuracy.

@ For complex ML models, like deep neural networks, the ADAM
algorithm is quite popular and the standard one.
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Conclusions

@ Basic concepts of supervised machine learning
@ Split of the dataset: train, validation, and test
@ Regularization techniques (L1 and Lo): control the model’s complexity
@ Bias-variance composition: tension between bias and variance terms
o Different gradient descent algorithms:
e Stochasticity (SGD)
e Momentum (SGD + momentum)
o Adaptive learning rate (RMSporp and ADAM)
@ Next lecture: Deep Neural Networks
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