
Linking GitOPS towards fast innovation over BigHPC
Speaker: Samuel Bernardo (LIP) on behalf of BigHPC consortium

Outline

● The BigHPC consortium
● Overview of BigHPC platform and development challenges
● Why GitOPS and how to get it in practice
● GitOPS applied to BigHPC
● Next steps

2/12

BigHPC consortium

3/12

BigHPC platform overview

4/12

Overview of BigHPC development challenges

● Software quality
● Components integration
● Deploy more often
● Easy error recovery
● Keep teams together in same direction
● Share knowledge between teams
● Documented deliveries with complete changes history

5/12

What is GitOPS

6/12

Why GitOPS

7/12

Current status: implemented workflow

Developer
IDE

Development
testbed

Preview
testbed

Delivery

K8S

VMs

8/12

Review Job log directly from web interface

9/12

Attach the Environment with the Infrastructure

● GitOPS push based strategy is
implemented using Gitlab Agent

● agentk communicates to the Gitlab Agent
Server (KAS) to perform GitOPS operations

● Changes applied to Kubernetes cluster
anytime developer changes a manifest file
managed within Gitlab

● This approach keeps Gitlab platform
isolated from real infrastructure

10/12

GitOPS aware of infrastructure state

● Argo CD provides a
web user interface
that allows to check
application real time
activity

● Health status analysis
of application
resources

11/12

Next steps

● GitOPS insight
○ Improve GitOPS implementation, extending Gitlab CI/CD agent with

kubernetes
○ Improve team collaboration using Gitlab platform
○ Test deployment error recovery taking the advantage of git

● Pilot
○ Test platform components with real use cases
○ Identify application performance issues

12/12

Funding:

Partners:

User and administrator interfaces

Manage code and do debugging

OnDemand: extend access to applications

What is GitOPS

● Its inception in 2017 by Weaveworks
● Uses developer common tools:

○ git version control system to track code changes
○ continuous deployment tools

● Have a git repository that contains infrastructure declarative
description

● Production environment match the described state in the repository
● Deployment and updates means push changes to a git repository

Why GitOPS

● Always use same procedure to deploy applications without the burden of
switching between required tools

● Lighter learning curve since everything happens on git with less effort
● Error recovery as easy as git revert
● Easier credential management since only required access to git repository
● No need to give developers direct access to the deployed endpoints
● Complete description of what is deployed

○ every changes goes through the git repository
○ complete history of every change made to the system

● Share knowledge with great commit messages where everybody can
reproduce and find examples how to set up new systems

Deployment strategy: push based

● Implemented by Gitlab CI/CD,
Jenkins, Circle CI or Travis CI

● Code updates trigger pipeline
execution (external event)

● Environment configuration
repository is updated with new
deployment descriptors

● misses automatic check of
environment desired state

Deployment strategy: pull based

● Operator is introduced
comparing with previous
strategy

● Implemented by Argo CD, Flux
CD and Gitlab starting from v15

● Operator checks consistency
between deployed
infrastructure, environment
repository and image registry

Multiple Applications and Environments

● GitOPS also support multiple build pipelines from different repositories
● Changes in each project generate an update to environment repository
● Multiple environments with GitOPS means separate branches in environment

repository
● Operator will react on changes and run the associated environment pipeline

● Adopting GitOPS using Gitlab platform

○ Implement continuous deployment applying software quality best practices

○ Well documented deliveries with complete history of system changes

○ Promote shared knowledge and get teams together

○ Easy to reproduce the thought process of changing infrastructure

○ Get the examples to setup new systems

BigHPC Gitlab platform adoption

● Testbeds and Pilot

○ Review the hardware profiles and application requirements

○ Define execution environments for the required testbeds

○ Gather applications that covers the demanded use case requirements

○ Prepare the pilot to test platform components with collected applications

over HPC

○ Collect the metrics and get the report from jobs submission

BigHPC environments

Current status: team collaboration

Current status: team collaboration

Gitlab stages for the project

● Development testbed
● Preview testbed
● Delivery to production (create a release)

Create the pipeline configuration

Developers integration task

● Create a new project in Gitlab
● Add pipeline from template

Check pipeline results

Click over status of pipeline after passing the tests

Look into pipeline stages

Check jobs state

Attach the Environment with the Infrastructure

● Gitlab Runners are agents that
run CI/CD jobs from Gitlab

● Gitlab Runner implements
executors used to run builds in
different environments

● Environments comprehends
different Operating Systems and
available tools, such as docker
and kubernetes

● Each Gitlab Runner can have
different access policies and can
be limited to pipelines asking for
specific tag

Attach the Environment with the Infrastructure

GitOPS aware of infrastructure state

● Argo CD implements the GitOPS
pull based strategy

● This not only follows the
repositories activity, but also the
deployment state in the
infrastructure

● Webhook integration with Gitlab
● Support of multiple config

management and templating
tools (Kustomize, Helm, …)

Background execution behind the scene

● Develop Gitlab CI/CD configuration for the required pipelines
● Create a Gitlab project and submit the code for the defined testbeds
● Connect Gitlab project with Gitlab runner instance, providing the reports in

Gitlab
● Create docker images to pack the required code
● Do the required experimental validation checking the automated results over

the testbeds (development and preview)
● Deploy the release to the production infrastructure
● Present the Pilot for further validation

