

Universidade do Minho Escola de Ciências

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

EOSC Activities in the High Energy Physics community

Nuno Castro nuno.castro@fisica.uminho.pt

thanks to Jorge Gomes for the discussions and materials for this talk

11th Iberian Grid Conference Faro, Portugal, 10th October 2022

Physics projects with relation to EOSC

- **ESCAPE**: Establish a single collaborative cluster of next generation European Strategy Forum on Research Infrastructures (ESFRI) facilities in the area of astronomy- and accelerator-based particle physics in order to implement a functional link between the concerned ESFRI projects and European Open Science Cloud (EOSC)
- **ExPANDS**: collaboration between 10 national Photon and Neutron Research Infrastructures and EGI. The aims to deliver standardised, interoperable, and integrated data sources and data analysis services for Photon and Neutron facilities
- **PANOSC**: Photon and Neutron Open Science Cloud, joins six European research infrastructures (ESRF, CERIC-ERIC, ELI Delivery Consortium, the European Spallation Source, European XFEL, ILL, and the e-infrastructures EGI and GEANT
- **interTwin**: interdisciplinary Digital Twin Engine for modelling and simulation includes fast simulation solution to complement the Monte Carlo approach at the LHC and Lattice QCD simulations to develop a theoretical understanding of matter in the plasma phase (started last September)
- ARCHIVER: Pre-Commercial Procurement (PCP) approach to competitively procure R&D services for archiving and digital preservation, lead by CERN
- EOSC-Future: Implementing the European Open Science Cloud (EOSC), CERN participates with the consolidation of data lake activities and enabling open access to data
- **FAIR4FUSION**: make European funded data more widely available to the fusion community (finished in May 2022)

ESCAPE partners

Joint Institute for VLBI ERIC

CWI

Centrum Wiskunde & Informatica

Budget 15.98M€

31 Partners

- HL-LHC
 - High Energy Particle Physics

7 ESFRIs & flagship projects

2 EIROs (CERN, ESO)

Feb 2019 - Jan 2023

- **FAIR** 0
 - **High Density Exotic** Matter Physics

Leibniz-Institut für Astrophysik Potsdam

Not a topic of this presentation

Computing in High Energy Physics

- Particle physics
 accelerators and detectors
 are amongst the most
 complex devices built by
 the humankind
- Being on the edge of the technology is required
 - Big Data
 - Advanced computing

Big Data - High Energy Physics in context

from data to physics at the Large Hadron Collider a long and complex path

 40 million proton-proton collisions per second

from data to physics at the Large Hadron Collider a long and complex path

- O(100 million) readout channels
- assuming 1 channel = 1 byte
 40x10⁶ ev/s * 100*10⁶ byte/ev

= 4 PB/s

from data to physics at the Large Hadron Collider a long and complex path

Ingredients for analysis preservation

[credit: Clemens Lange]

Software preservation

- LHC experiments are investing in reuseable / reproducible analysis
- Technology Choice for software archival:
 - Git
 - Linux Containers

Software preservation - reinterpretation of results

- Analysis Preservation as part of the workflow
- Allow future theories to be tested against current analysis (reinterpretation)

Preservation of Code, Scripts, Workflows

Reproducible research data analysis platform

Flexible

Run many computational workflow engines.

Scalable

Support for remote compute clouds.

Reusable

Containerise once, reuse elsewhere. Cloud-native.

Free

Free Software. MIT licence. Made with \heartsuit at CERN.

Data repositories zenodo

https://zenodo.org

Upload

Any size/format Any science Any research output

Describe

Reusable for others Link to related research Open, embargoed and closed content

Publish

Instantly available
DOI: Citeable. Discoverable.
Article Level Metrics

Data repositories zenodo

= Citable Code

Data lake model

- ⇒ Keep the real value from the experiments safe
 - (RAW) data and a solid baseline of CPU in owned and stable sites
 - Allow for multiple CPU resources to join, even temporarily
 - Eventually choosing the cheapest at any moment
 - Solid networking: use caches / streaming to access data
- ⇒ Reduce requirements for Computing resources
 - Commercial Clouds
 - Other sciences' resources
 - SKA, CTA, Dune, Genomics, ...
 - HPC systems

Data lake model

Thanks!

any questions?

you can also find me at nuno.castro@fisica.uminho.pt