[X J
EOSC w
SYNERGY 0 0200, 0
& R o * P c @
esl-AceE : EUROCC PORTUGAL

U t i
i t h

- %

1 o o
S g;.!! | LABORATORIO DE INSTRUMENTACAO
Nacional de - —— E FISICA EXPERIMENTAL DE PARTICULAS
C? putacdo l p
Distribuida

Jorge Gomes / Mario David
udocker@lip.pt

Cofinanciado por:

B CSMPETE 1Y% . . Fundagio
= %0 #2020 Lisbe20™ FCT &8

Help users run in heterogeneous environments

Run applications across Linux systems

A tool to execute containers that is easy to use and deploy

Providing privilege-less methods to execute containers

Empower end-users to leverage containers

Advantages

Installation:

is deployable directly by the end-user

does not require privileges for installation

self contained does not require installation of additional software
does not require compilation just deploy and use

does not require system administrators intervention to setup

can be installed from source, release tarball or from PyPI

Execution:

as a normal end-user

runs entirely in user space

execution regardless of OS functionalities
respecting normal process controls and accounting
supports multiple execution methods

in Linux interactive or batch systems

|deal to execute applications across digital research infrastructures

udocker in 4 steps

1) Installation:
e get the udocker python code
e untar the python code into your home directory
* udocker install to copy and unpack the execution engines
2) Get a container image:
e udocker pull to get containers from docker compatible repositories
e udocker load to load images in docker and OCI formats
e udocker import to import images from tarballs
3) Extract the image content:
e udocker create to extract the container directory tree from the image
4) Execute applications from the image:
e udocker run to execute using one of the supported methods

udocker in a nutshell

pull import

simple
pathname translation
Nno namespaces

no chroot
no mounts
:
===
e _ e e — — — =
ptrace shared lib
(proot) (fakechroot)

user
namespaces
(runc/crun)

load

read layers

Hlatt
an;
nlng
container
dir tree
Namespaces
(singularity) execute

SHOME/.udocker/

Implementation

* Front-end

Provides the a command line interface similar to docker and other tools
Provides handling of container images (pull, import ,export, load save)
Manages a local image and extracted containers repository

Provides the interface with the several execution engines

Written in Python supports Python 2.6, 2.7 and Python >= 3.5

 Backend

Includes external binary tools modified and packaged by the udocker team
Both executables and libraries implementing the several engines
Compiled statically to enable execution across Linux systems

& indigo-dc / udocker Pubiic

<> Code

1.9

0 mariojmdavid Merge pull request #371 from indigo-dc/devel3

=RErRNrRE R -RE-RR-RE S SN SN SN BN |

(Issues 18 [Pulirequests 1

master ~ ¥ 9 branches

.sqa

© 21 tags

) Discussions () Actions [Projects [0 Wiki

Go to file

4 EditPins ~ @ Unwatch 34

® fdzescs onAug26 O 1,696 commits

Remove sqa configuration block not required, since we only need trigg... 16 months ago

update version

update variables in udocker.conf

last month

16 months ago

> || % Fok 1068

@ Security |~ Insights 3 Seftings

About

A basic user tool to execute simple

¢y Star o71

@

docker containers in batch or interactive

systems without root privileges.

¢ indigo-dc.github.io/udocker/

docker gnid hpc containers

emulation batch user

chroot

utils

-gitignore
.mailmap
travis.ymi
AUTHORS.md
CHANGELOG.md
CITING.md

CONTRIBUTING.md

tests run containers improved reporting

add to gitignore, remove link

add mailmap

prepare for test and travis

update several documents, markdown style check
update version

update several documents, markdown style check

fix typos

last month

17 months ago
6 years ago

4 years ago

16 months ago

16 morghs ago

16 months

0 Readme

&% Apache-2.0 license
Y 971 stars

® 34 watching

% 106 forks

Releases

© udocker 1.3.4

on Aug 26

19

+ 18 releases

-

Install from a release

’ :lrtr;s-:ll_lg\ithub.comlindigo-dcludockerlreleasesldownIoadlv1 .3.1/udocker-1.3.1.tar.gz \
> udocker-1.3.1.tar.gz
untar the Python code. It is extracted to a directory called udocker
$ tar zxvf udocker-1.3.1.tar.gz
optionally add the just created udocker directory to the PATH
$ export PATH="pwd /udocker:$PATH

install the binaries required to execute containers under $SHOME/.udocker

$ udocker install

udocker commands

S udocker help

S udocker pull --help

search pull create run images
rm rmi rename rmname clone
import export load save inspect
verify mkrepo protect unprotect setup
login logout help

» udocker is mainly a run-time to execute containers

* Provides a subset of docker commands
 Actual container creation is better performed using docker itself

Pull and run

S udocker pull quay.io:centos/centos:7
Info: downloading layer sha256:2d473b07cdd5f0912cd6f1a703352¢82b512407db6b05b43f2553732b55df3bc
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955hb46d4
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955hb46d4
S udocker create --name=C7 quay.io:centos/centos:7
7464cebbb-e9c6-3eb0-9646-6040092b4367
S udocker -g run C7 /bin/cat /etc/redhat-release
CentOS Linux release 7.9.2009 (Core)

S udocker -q run --user=SUSER --bindhome --hostauth C7 /bin/bash

464ceb6b$S

For the impatient

S udocker -q run --user=SUSER --bindhome --hostauth \
quay.io/centos/centos:7 /bin/bash

77af3c48S pwd
/home/jorge

udocker pull

* Images
* Layers and metadata are pulled using the DockerHub REST API
* Image metadata is parsed by udocker to identify the image layers
e Layers are stored in the use home directory under SHOME/.udocker/layers
* Layers can be shared by multiple images

SHOME/.udocker

repos layers

3745893245728937532

image/tag

manifest

TAG

3745893245728937532

Symbolic Links
8874564763483752222

vl, v2

1245573456735639321

udocker create

* Containers
* Are produced from the layers by flattening them sequentially
* Each layer is extracted on top of the previous
* The OnionFS whiteouts are respected, and file protections are changed as needed
e The obtained directory trees are stored under SHOME/.udocker/containers

SHOME/.udocker

repos layers containers

2 3745893245728937532 d8a08182-2a7b-3f6d-973e-62f411060c2e
image/tag

37458932457289 EXTRACT ROOT

|

manifest

Symbolic Links
TAG

8874564763483 7/5R222

124557345673 0321 bin lib etc usr var dev ...

vl, v2

udocker run

e Execution
e chroot-like

udocker
directory tree

$HOME/.udocker n

9fe2f9e7-ce37-3
be5-b12d-829a3
236d2a6

imagerepo.n container.
execmode
ame

“chroot” to this directory
and it becomes the new root
for the container processes

Execution engines

Mode Base Description
PRoot PTRACE accelerated (with SECCOMP filtering)
P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)
R1 runC / Crun rootless unprivileged using user namespaces
R2 runC / Crun rootless unprivileged using user namespaces + P1
R3 runC / Crun rootless unprivileged using user namespaces + P2
F1 Fakechroot with loader as argument and LD_LIBRARY_PATH
F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH
F3 Fakechroot modified loader and ELF headers of binaries + libs changed
F4 Fakechroot modified loader and ELF headers dynamically changed
S1 Singularity where locally installed using chroot or user namespaces

s

udocker setup --execmode=F3 ub18

Thank you !

Questions ?

udocker@lip.pt
https://github.com/indigo-dc/udocker

Advantages of using containers for applications

e Encapsulation

— Applications, dependencies, configurations everything packed together
— Portability across Linux systems
— Makes easier the distribution and sharing of ready to use software

e Reproducibility
— The whole application and run-time environment is in the container
— Can be easily stored for later replay, reuse and preservation

» Efficiency
— One single kernel shared by many applications
— Performance and resource consumption similar to host execution
— Take advantage of newer more optimized libraries and compilers

e Maintainability

— Easier application maintenance, distribution and deployment

Containers

Dependencies
P Hardware |

Container Host Separate Environment
r--—-—--- 1 Q- - —-—--- 1 e
| | ! | | :

o | | Appl | App2 |
: Application | : Linux Kernel ! I
|
| + I | + I I
| | | | | :
I I I l I Linux Kernell
: Libraries I | Hardware I I '
I | I | I
| | |
I | .

Linux system call interface

User application / service

User Space
Container

System Call Interface (ABI)

Kernel Space
Host

chroot Host /

etc bin mnt

lib

Container

Process
mount(“VOL”, “/mnt”

’ ')

Eﬁdir(“/mnt”)
pivot_root(“”, “”)

an)

chroot(“
execl(“/bin/myprog”, ...)

* Using mount usually requires
privileges (CAP_SYS_MOUNT)
e Can use FUSE e.g. libguestfs
* Using chroot and pivot_ root
usually requires privileges
(CAP_SYS_CHROOT)

* (Can use user namespace

T

UDOCKER

Concept

Motivations

Run applications encapsulated in docker containers:
e without using docker
» without using privileges
» without system administrators intervention
» without compilation or additional system software

and run containers:
as a normal end-user without requiring privileges
in Linux systems regardless of OS functionalities

respecting normal process controls and accounting
in Linux interactive or batch systems

Empowers end-users to run applications in containers

udocker in 4 steps

Installation:
* Just get the udocker python code
* No need to install or compile additional software
* No need of system administrator intervention

Get container images:
e Pull containers from docker compatible repositories

e Load and save docker and OCI formats

* Import and export tarballs

Extract from images:
e Create the container directory tree from the image

Execute containers:
 Run using several execution methods

udocker is an integration tool

pull import load

: read layers
simple

pathname translation p
no namespaces /al‘l'en,'n
no chroot &
no mounts

I user
ptrace shared lib | Namespaces

(proot) (fakechroot) : ?fﬂi;g:::; (singularity)

container
dir tree

execute

SHOME/.udocker/

* Python for portability and easier execution across systems

e External binary tools and libraries to enable execution
- _4

* Python code:
e Command line interface similar to docker
* Handling of containers (pull, load, import etc)

* Local repository of images and containers
* Interface to the execution engines (tools and libraries)

» External tools & libraries modified for udocker:

\ » Execution of containers using several engines 4

T

UDOCKER

Installation

:= README.md

Documentation

The full documentation is available at:

udocker documentation
o |nstallation manual

o User manual

o Reference card

Many recent
improvements in the
documentation

https://indigo-dc.github.io/udocker/

2. Installation

2.1. Install from a released version

Download a release tarball from https://github.com/indigo-
dc/udocker/releases:

wget https://github.com/indigo-dc/udocker/releases/download.
tar zxvf udocker-1.3.8.tar.gz
export PATH= pwd /udocker:$PATH

4

Alternatively use curt instead of wgetr as follows:

curl -L https://github.com/indigo-dc/udocker/releases/downlc
> udocker-1.3.0.tar.gz

tar zxvf udocker-1.3.0.tar.gz

export PATH= pwd /udocker:$PATH

4

udocker executes containers using external tools and libraries
that are enhanced and packaged for use with udocker. For more
information see section 6 External tools and libraries. Therefore
to complete the installation invoke udocker install to
download and install the required tools and libraries.

Latest old source for Python 2 only:
* https://github.com/indigo-dc/udocker/tree/devel

Releases
°1.3.0 O latest for Python 3 also works on Python 2
*1.1.7 [old code for Python 2 only

* No longer a release prototype it has become stable
* Future new features will only be available in the Python 3

* Differences

All new features ported or back-ported between the original Python 2 and the
new Python 3, they are now equivalent
Differences mostly at internal level where it was redesigned

No longer a single large Python script

Now modular to ease maintenance and new developments
Command line interface retains the same syntax

If there are things that don’t work please add an issue

5 - - - -~ - - 4

Install from a given release

v1i.1.8

https://github.com/indigo-dc/udocker/releases
udocker 1.3.0

@ mariojmdavid released this 11 days ago

udocker v1.3.0 see the changelog and the documentation for further information.

« Changelog: https://github.com/indigo-dc/udocker/blob/devel3/CHANGELOG.md
« Documentation: https://indigo-dc.github.io/udocker/
-« udocker release for Python 2.6, 2.7 and >= 3.6

Follow this steps to install and run udocker:

wget https://github.com/indigo-dc/udocker/releases/download/v1l.3.8/udocker-1.3.08.tar.gz
tar zxvf udocker-1.3.8.tar.gz
export PATH= pwd fudocker:$PATH

Install from a release

’ ::tr;s-:ll_lg\ithub.comlindigo-dcludockerlreleasesldownIoadlv1 .3.0/udocker-1.3.0.tar.gz \
> udocker-1.3.0.tar.gz
untar the Python code. It is extracted to a directory called udocker
$ tar zxvf udocker-1.3.0.tar.gz
optionally add the just created udocker directory to the PATH
$ export PATH="pwd /udocker:$PATH
install the binaries required to execute containers under $SHOME/.udocker

$ udocker install

$ udocker version

Install from the source

$ git clone https://github.com/indigo-dc/udocker.git
$ cd udocker/udocker
create a logical link
$ In -s maincmd.py udocker
optionally add the just created udocker directory to the PATH
$ export PATH="pwd :$PATH
install the binaries required to execute containers under $SHOME/.udocker
$ udocker install

$ udocker version

Install from PyPI

Create Python 3 virtual env
$ python3 -m venv udockervenv
activate the virtual env

$ source udockervenv/bin/activate

$ ## install udocker from PyPI
$ pip install udocker

install the binaries required to execute containers
$ udocker install

$ udocker version

Install without outbound connectivity

$ wget\
https://github.com/indigo-dc/udocker/releases/download/v1.3.0/udocker-1.3.0.tar.gz

Get the additional tools (executables, libraries, etc)

$ wget\
https://github.com/jorge-lip/udocker-builds/raw/master/tarballs/udocker-englib-1.2.8.tar.gz

TRANSFER BOTH TARBALLS TO THE REMOTE SYSTEM and once transferred do:

tar zxvf udocker-1.3.0.tar.gz
export PATH="pwd’/udocker:$PATH

P N

then install the binaries FROM THE TARBALL

export UDOCKER_TARBALL=*udocker-englib-1.2.8.tar.gz”
udocker install

P N

T

UDOCKER

Basic Usage

udocker commands

S udocker help

S udocker pull --help

search pull create run images
rm rmi rename rmname clone
import export load save inspect
verify mkrepo protect unprotect setup
login logout help

» udocker is mainly a run-time to execute containers

* Provides a subset of docker commands
 Actual container creation is better performed using docker itself

Pull images from dockerhub

S udocker pull ubuntu:18.04

Info: downloading layer sha256:726b8a513d66e3585eb57389171d97fcd348e4914a415891e1dal35b85ffabc3
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4

S udocker pull quay.io:centos/centos:7

Info: downloading layer sha256:2d473b07cdd5f0912cd6f1a703352¢82b512407db6b05b43f2553732b55df3bc
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955hb46d4
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955hb46d4

« By default udocker pulls images from dockerhub

Create runnable container from an image

container-name

|

S udocker create --name=ub18 ubuntu:18.04

4c821126-aa28-3731-8d44-eae2f33¢c6477

|

container-id

« Create will extract the content of an image into the user home directory

« By default created containers are stored under $HOME/.udocker/containers
» Created containers can be referenced either by id or name

List created containers

S udocker ps

CONTAINER ID
1a0915b2-a8e1-395a-98da-f8dd61530f41
6432f728-8577-3512-a109-0e953f05cd54
4c821126-aa28-3731-8d44-eae2f33c6477
C40ce9b6-5902-3454-a9f0-21534b2c2a9c
B61a6092-aff3-3579-al12c-1e68f5bfa953

P M NAMES
. W ['UB18P2']
. W ['f34]

. W ['ub18']
. W ['UB18CC']
.W ['C7C]

IMAGE
ubuntu:18.10
fedora:34
ubuntu:18.04
ubuntu:18.04
centos:centos7

« List created containers stored under $HOME!/.udocker/containers

* Includes: id, protection, mode, names and related image
« Although the command is named ps there are no associated processes

Execute a container

S udocker run ubl$8

or
S udocker run 4c¢821126-aa28-3731-8d44-eae2f33c6477

3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k %k 3k 3k 3k 5k %k 3k 5k %k 3k 5k %k 5k 3k 3k 5k %k 3k 5k %k 5k 5k 3k 5k %k 3k 5k %k 3k 5k 3k 5k %k 3k 3k %k 3k 5k 3k 3k %k 3k 5k %k 3k 5k %k %k *k %k %k *k %k k %k %k *k

* *

* STARTING 4c821126-aa28-3731-8d44-eae2f33c6477

*
3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k %k 3k 3k 3k 5k 3k 3k 5k %k 3k 5k %k 5k 3k 3k 5k %k 3k 5k %k 5k 3k 3k 5k %k 3k 5k %k 3k 5k 3k 5k %k 3k 3k %k 3k 5k 3k 3k %k 3k 5k %k 3k 5k %k %k *k %k %k *k %k k %k %k *k

*
*

executing: bash

root@host:~# If the container has a default cmd to run

it will be run otherwise starts a shell

« List created containers stored under $HOME!/.udocker/containers

* Includes: id, protection, mode, names and related image
« Although the command is named ps there are no associated processes

Execute a container

S udocker run ubl$8 ubuntu

3k 3k 3k 3k %k 3k 3k 3k 3k ok 3k 3k 3k %k 3k 5k 3k ok 3k 3k 5k %k 3k 5k %k 3k 3k 3k 5k %k 3k %k %k 3k 5k %k 3k *k 3k 5k *k %k k *k %k *k
*

* STARTING 4c821126-aa28-3731-8d44-eae2f33c6477 *

*

3k 3k 3k 3k 3k 3k ok 3k 3k 3k %k 3k 3k 3k ok 3k 3k %k %k 3k 5k %k 3k 5k 3k %k *k %k k k

3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k %k 3k 3k %k HK 3k 3k 5k %k 3k 3k %k 3k 5k %k 5k 3k 3k 3k %k 3k 5k %k 5k 5k 3k 5k >k 3k 5k %k 3k 5k 3k 5k %k 3k 3k %k 3k 5k 3k 3k %k 3k 5k %k 3k 5k %k 3k *k %k %k *k %k k %k %k *k

executing: bash
root@host:~#
root@host:/# c /etc/lsb-release

DISTRIB ID=Ubuntu root emulation
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubunt
root@host:/# id
uid=0 (root) gid=0 (root) groups=0 (root) ,b1000 (G1000)

.04.5 LTS"

Run as yourself

S udocker run --user=jorge -v /home/jorge \
-e HOME=/jorge/home --workdir=/home/jorge ub18

3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k %k 3k 3k 3k 5k 3k 3k 5k %k 3k 5k %k 5k 3k 3k 5k %k 3k 5k %k 5k 5k 3k 5k >k 3k 5k %k 3k 5k 3k 5k %k 3k 5k %k 3k 5k 3k 3k %k 3k 5k %k 3k %k %k %k %k %k %k *k %k 5k %k %k *k

* *
* STARTING 4c821126-aa28-3731-8d44-eae2f33c6477 &
* *

3K 3K 3k 3k 3k 3k 3k 3k 3k 3k 3K 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk 3k 3k 3k 3k 3k 3Kk 3k 3k 3k 3k 3k 3k 3k 5Kk 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k sk 3k 3k 3k 3k 5k 3k 3k 3k sk 3k 3k 3k 3k 5k 3k 3k 3k sk 3k 3k %k %k 5k 5k 3k 3k Kk k Kk k
executing: bash
jorge@host:~S$ id
uid=1000(jorge) gid=1000(G1000) groups=1000(G1000)
jorge@host:~$ pwd
/home/jorge

« --user identifies a username
 -v binds a directory to be visible inside of the running container

 -e allows setting environment variables

Run as yourself

S udocker run --user=SUSER --bindhome --hostauth ub18

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok sk sk 3k sk %k sk 3k 3k 3k 3k 3k 3k 3k 5k ok 3k ok ok sk ok sk sk sk ok 3k 3k 3k 3k 3k 3k sk ok ok ok ok sk ok sk sk sk 3k 3k 3k 3k 3k ok 3k ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok

* *
* STARTING 4c821126-aa28-3731-8d44-eae2f33c6477 *
* *

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok sk ok 3k sk sk sk sk 3k ok 3k 3k 3k 3k 5k 3k ok ok ok sk ok sk sk sk ok 3k 3k 3k 3k 3k 3k sk 5k ok sk ok sk sk sk sk sk 3k 3k 3k 3k 3k ok 3k sk ok ok ok ok ok ok sk sk sk sk sk ok sk sk sk sk sk ok

executing: bash
jorge@host:~S$ id
uid=1000(jorge) gid=1000(G1000) groups=1000(G1000)
jorge@host:~$ pwd
/home/jorge

« --user identifies a username
» --bindhome binds the user home directory to be visible in the container

» --hostauth uses the host passwd and group in the container

Less verbosity

S udocker -q run ub18 /bin/cat /etc/Isb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=Dbionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.5 LTS"

$ alias u=“udocker -q run --user=SUSER --bindhome --hostauth ub18”
S u /bin/ls
\ Will list the content of the user home directory in the host

e - quiet mode

Overriding the entrypoint

$ udocker -q run --user=SUSER --bindhome --hostauth ub18 /bin/bash -¢ “id; pwd”
$ udocker -q run --user=SUSER --bindhome --hostauth --entrypoint=“/bin/bash” ub18 -c “id; pwd”
S udocker -q run --user=SUSER --bindhome --hostauth --entrypoint="" /bin/bash ub18 -c “id; pwd”

uid=1000(jorge) gid=1000(jorge) groups=1000(jorge)
/home/jorge

 —-entrypoint will override the entrypoint defined in the container metadata
« —-entrypoint is valid from v1.3.0 and is the preferred method

”»n

A container defined entrypoint can be ignored with --entrypoint=

Run commands inline

S udocker -q run --user=SUSER --bindhome --hostauth --entrypoint=“"” ub18 /bin/bash <<EOD
id

pwd

EOD

uid=1000(jorge) gid=1000(jorge) groups=1000(jorge)
/home/jorge

» Useful to execute commands inside a container in scripts

Duplicate a container

S udocker clone --name=new18 ubil8

9fe2f9e7-ce37-3be5-b12d-829a3236d2ab6

|

new cloned container-id new cloned name

S udocker run newl8
or
S udocker run 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6

« The command clone duplicates an existing container

Import and export tarballs with images

export to tarball input container

S udocker export -o ubl8.tar ub18 /
import ub18.tar tarball and
S udocker import ubl8.tar myubl8:latest ——— create image with this name

and tag
S udocker export -o - ub18 | docker import - myub18:latest

S docker export bd221eb5e452 | udocker import - anotherub18:latest

* Export produces a tar file from a created container with the container filesystem
* Export does not include the container metadata

Import takes a tar file and loads its content as an image
Import and export are interoperable with docker

Saving space

S udocker import --tocontainer --name=xx ub18.tar

e --tocontainer allows importing a tar file directly to a container (NOT TO IMAGE !!)
 No image is created

* The newly created container can be named with --name

e This will save both space and the intermediate step of creating an image

udocker import --mv ubl8.tar myub18:latest

e Import a tar file normally to a new image
» To save space the tar file is moved to the udocker repository instead of copied

» The original tar file disappears

Import and export including udocker specific metadata

S udocker export --clone -0 ub18.tar ub18

S udocker import --clone --name=xx ub18.tar

Export a container to a tar file including the udocker specific metadata
Both container data and metadata are included

Import a tar file produced by export --clone as a new CONTAINER

The newly created container can be named with --name

NOT interoperable with docker as includes udocker specific information

Transfer containers across machines

export the tarball to stdout

S udocker export --clone ub18 | ssh user@host \

“udocker import --clone --name=xx -"

\

read the tarball from stdin

Export a container and import it in another remote host or account using SSH
Allows export and import to be accomplished in one go

Not interoperable with docker

Notice the “” around the remote command when using SSH

Containers with execution modes such as F2, F3 and F4 modes may not work,
breaks if the pathname to the user home (container dir) is not the same

Save and load images

S docker save -o image.tar centos:centos7
or

$ udocker save -o image.tar centos:centos?

udocker load -i image.tar

Load an image saved by docker or udocker

A saved image will contain multiple layers and metadata (different for export !!)
A saved image cannot be imported only loaded

Can be used to load docker images instead of pulling them from dockerhub
udocker also provides a compatible save functionality

Remove containers and images

delete container by alias or container-id
$ udocker rm -f ub18 /

S udocker rm -f 4c821126-aa28-3731-8d44-eae2f33c6477

N

-f force is optional

/

$ udocker rmi -f ubuntu:18.04 delete image

e Deleting images does not affect the created containers

T

UDOCKER

Advanced Topics

udocker pull

* Images
* Layers and metadata are pulled using the DockerHub REST API
* Image metadata is parsed by udocker to identify the image layers
e Layers are stored in the use home directory under SHOME/.udocker/layers
* Layers can be shared by multiple images

SHOME/.udocker

repos layers

3745893245728937532

image/tag

manifest

TAG

3745893245728937532

Symbolic Links
8874564763483752222

vl, v2

1245573456735639321

udocker create

* Containers
* Are produced from the layers by flattening them sequentially
* Each layer is extracted on top of the previous
* The OnionFS whiteouts are respected, and file protections are changed as needed
e The obtained directory trees are stored under SHOME/.udocker/containers

SHOME/.udocker

repos layers containers

2 3745893245728937532 d8a08182-2a7b-3f6d-973e-62f411060c2e
image/tag

37458932457289 EXTRACT ROOT

|

manifest

Symbolic Links
TAG

8874564763483 7/5R222

124557345673 0321 bin lib etc usr var dev ...

vl, v2

udocker run

e Execution
e chroot-like

udocker
directory tree

$HOME/.udocker n

9fe2f9e7-ce37-3
be5-b12d-829a3
236d2a6

imagerepo.n container.
execmode
ame

“chroot” to this directory
and it becomes the new root
for the container processes

Where is my container

/ container alias or container-id

/home/jorge/.udocker/containers/f80f88de-3227-3cba-8551-cd62ddb14174/ROOT

S udocker inspect -p ubl8

S Is S(udocker inspect -p ub18)
bin dev home lib64 mnt proc run srv tmp var boot etc lib media opt root sbin sys usr

* Inspect -p prints the pathname to the container ROOT directory
e Knowing the pathname is useful to copy/manage/edit the container files directly

Execution engines

* udocker integrates several execution methods:
» Supports several engines to execute containers
* They are selected per container via execution modes

Mode Base Description
PRoot PTRACE accelerated (with SECCOMP filtering)
P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH
F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

Change the execution engine

/ select execution mode

udocker setup --execmode=F3 ub18

udocker setup --execmode=P1 ub18

N\

revert to the default execution mode P1

Execution modes are selected using setup

Each mode has two characters
o thefirstis a letter that identifies the engine
o the second is a number that identifies different options within an engine

The default execution mode is P1

List containers and execution engines

$ udocker ps -m

CONTAINER ID

1a0915b2-a8el-395a-98da-f8dd61530f41 .
64321728-8577-3512-a109-0e953f05cd54 .
4c821126-aa28-3731-8d44-eae2f33c6477 .
c40ce9b6-5902-3454-a9f0-21534b2c2a9¢c .
b32db50b-ecfd-3801-bd40-a7ba64b6823b .
b61a6092-aff3-3579-al2c-1e68f5bfa953 .

MOD NAMES IMAGE

F2 ['UB18P2'] ubuntu:18.10
P1 ['f34'] fedora:34

R1 ['ub18'] ubuntu:18.04
P2 ['UB18CC'] ubuntu:18.04
P1 ['BUSY'] busybox:latest
F4 ['C7C'] centos:centos?

M
W
W
W
W
W
W

e udocker -m will list all containers and their execution modes

Engine Pn : PRoot

* PRoot uses PTRACE to intercept system calls

« Pathnames are translated before being passed to the call
* To expand container pathnames into host pathnames

» After the call returned pathnames are translated back
* To shrink host pathnames to container pathnames

 P1 mode uses PTRACE + SECCOMP filtering, to minimize the interception to the
set of calls that manipulate pathnames
 We developed code to make it work on recent kernels
 P1isthe udocker default mode
e P2 uses PTRACE without SECCOMP [traces all system calls [] slower

 The impact of tracing depends on the system call frequency

Engine Fn : Fakechroot

 Uses LD_PRELOAD to intercept shared library calls

e Pathnames are translated before being passed to the call
* To expand container pathnames into host pathnames

e After the call returned pathnames are translated back
* To shrink host pathnames to container pathnames

* Generally higher performance than Pn and even than namespace based engines
e Uses heavily modified Fakechroot for both glibc and musl libc

* Requires changes to files in the container

e Can run inside namespaces to provide nested containers

* There are 4x Fn modes (F1, F2, F3 and F4)

* Does not support root emulation

Engine Fn : all modes

.+ F1

Forces 1° exec() argument to be the container Id.so
Populates the LD_LIBRARY_PATH with container libs

Same as F1
Loading from default host paths /lib, /lib64 etc is disabled
Loading from Id.so.cache is disabled

Modifies the ELF headers of executables and libraries
m to use the ld.so of the container

m to direct the loading of shared libraries to the container

Same as F3 but changes ELF headers dynamically

Containers using kernel features

e chroot, pivot_root: make a given directory root of the file system

e Kernel namespaces: isolate system resources from process
e Mount: isolate mount points (cannot see host or other containers mounts)
e UTS: virtualize hosthame and domain
e |PC: inter process communications isolation (semaphores, shmem, msgs)
e PID: isolate and remap process identifiers (cannot see other processes)
e Network: isolate network resources (interfaces, tables, firewall etc)
e cgroup: isolate cgroup directories
e Time: virtualize boot and monotonic clocks
e User: isolate and remap user/group identifiers (user can be a limited root)

e cgroups: process grouping and resource consumption limits
e seccomp: system call filtering

e POSIX capabilities: split and drop root privileges

e AppArmor and SELinux: kernel access control

Linux user namespace

Available on fairly “recent” kernels/distributions

 Allows an unprivileged user to have a different UID/GID
* Enables an unprivileged user to become UID/GID 0 root
* Enables executing pivot_root, chroot and other calls

* May require some setup of subuid and subgid files
Network namespace becomes useless as only has a loopback device
root has limitations
e Cannot creates devices (mknod)
e Cannot load kernel modules
* Mount is restricted to some file system types
* |ssues on changing and handling user ids group ids
» Accessing files in the host (mount bind) can become problematic
Not enabled in some distributions (RedHat/CentOS)

Engine Rn : runc & crun

* runc & crun are tools to spawn containers according to the Open

Containers Initiative (OCl) specification
* Support unprivileged namespaces using the user namespace

* User namespace has several limitations but allows execution without privileges by
normal users

* Limited support for mapping of devices

 We added mapping of Docker metadata to OCI

* udocker can produce an OCl spec and run containers using runc or
crun transparently

NVIDIA GPUs

S udocker setup --nvidia ub18

 Enables use of NVIDIA GPUs
« Similar to nvidia-docker

» Copies the nvidia libraries from the host to the container

T

UDOCKER

Benchmarks

Lattice QCD

--e Native Altamira (Centos 6.9)

- - udocker Altamira (Centos 7.3)

--m Native CESGA (Centos 6.7)

--m udocker CESGA (Centos 7.3)
3% udocker CESGA (Centos 6.9)

Q
(]
2
[7e)
=
=]
=
=

Number of cores

by Isabel Campos (IFCA/CSIC)

OpenQCD is a very
advanced code to
run lattice
simulations

Using OpenMPI

udocker in P1 mode

Lattice QCD with OpenMPI

S mpiexec -np 256 udocker run \
-e LD_LIBRARY_PATH=/usr/lib \
--hostenv \
--hostauth \
--user=SUSER \
-v /tmp \
--workdir=/opt/projects/openQCD-1.6/main \
openqcd \

/opt/projects/openQCD-1.6/main/ym1 -i yml.in -noloc
by Isabel Campos (IFCA/CSIC)

mpiexec starts udocker which in turn runs the executable within the container
LD_LIBRARY_PATH is redefine to point to the container /usr/lib

The environment from the host has the OPENMPI variables that are essential
Must run as the same user as in the host hence --hostauth and --user

The workdir is within the container

Biomolecular Complexes

Q
E
=]

c

3
o

o
S

il
o

Disvis: case = PRE5-PUP2-complex
Angle = 5.0 Voxelspacing = 1 GPU = QK5200

Phys-C7 Dock-C7 Dock-U1l6

Machine

Better performance with Ubuntu 16 container

DisVis is being
used in
production with
udocker

Using OpenCL
and NVIDIA
GPGPUs

udocker in P1 mode

Moleculas dynamics

o
E
=]
e

S
o
o)
-

©
o

(.
-
w

Case = gromacs
GPU = QK5200

)

B Ratio

B

Phys-C7

Dock-C7

Dock-U16

Machine

UDockP1-§7 UDJckP1-U16 UDockF3-

PTRACE

SHARED LIB CALL

Gromacs is widely
used both in
biochemical and
non-biochemical
systems.

Using OpenCL and
OpenMP

udocker in P1 mode
udocker in F3 mode

TensorFlow

Container:

Latest GPU version of
Tensorflow (from
Docker Hub).

Train a model to
recognize
handwritten digits
(the MNIST data set).

https://github.com/tensorf

low/models.git

ey UP

EXECUTION TIME

P,
L2
o
=
o
o
@
Z
N
@
£
=

docker UDOCKER
(Execution mode F3)

Thank you !

Questions ?

udocker@lip.pt
https://github.com/indigo-dc/udocker

Selection in terms of performance

Mode | Base Description
P1 PRoot Some multithreaded applications can suffer degradation
P2 PRoot Same limitations as P1 apply
All system calls are traced causing higher overheads than P1

F1 Fakechroot All Fn modes have similar performance during execution
Frequently the Fn modes are the fastest.

F2 Fakechroot Same as F1

F3 Fakechroot Same as F1. Setup can be very slow

F4 Fakechroot Same as F1. Setup can be very slow

Selection in terms of interoperability

Mode Base Description

P1 PRoot PTRACE + SECCOMP requires kernel >=3.5
Can fall back to P2 if SECCOMP is unavailable

P2 PRoot Runs across a wide range of kernels even old ones
Can run with kernels and libraries that would fail with kernel too old

F1 Fakechroot Requires shared library compiled against same libc as in the container.
May load host libraries.

F2 Fakechroot Same as F1

F3 Fakechroot Requires shared library compiled against same libc as in container
Binary executables and libraries get tied to the user HOME pathname

F4 Fakechroot Same as F3. Executables and libraries can be compiled or added dynamically

Security when using kernel features

CLONE
UNSHARE
MOUNT
§%
S
&
NS
N
' e
Q‘Z
T
Wizard with root \} N
powers & ‘?ﬁb\\) &
PSS
; K
C O &
PID NAMESPACE SECCOMP Q¢§* $§"
RT &
MOUNT NAMESPACE USER NAMESPACE &

IPC NAMESPACE NET NAMESPACE

Search repositories

S udocker search centos

NAME OFFICIAL DESCRIPTION STARS
centos [OK] The official build of CentOS. 6611
pivotaldata/centos-gpdb-dev —---- CentOS image for GPDB development. Tag names often have GCC because we 13
pivotaldata/centos-mingw ---- Using the mingw toolchain to cross-compile to Windows from CentOS 3
jdeathe/centos-ssh ---- OpenSSH / Supervisor / EPEL/IUS/SCL Repos - CentOS. 118
pivotaldata/centos —---- Base centos, freshened up a little with a Dockerfile action 5
ansible/centos7-ansible ---- Ansible on Centos7 134
consol/centos-xfce-vnc ---- Centos container with "headless" VNC session, Xfce4 UI and preinstalle 129
pivotaldata/centos-gcc-toolchain ---- CentOS with a toolchain, but unaffiliated with GPDB or any other parti 3
smartentry/centos ---- centos with smartentry 0
kinogmt/centos-ssh ---- CentOS with SSH 29
centos/systemd ---- systemd enabled base container. 929
imaginel0255/centos6-1nmp-php56 ---- centos6-lnmp-php56 58
blacklabelops/centos ---- CentOS Base Image! Built and Updates Daily! 1
drecom/centos-ruby ---- centos ruby 6
darksheer/centos ---- Base Centos Image -- Updated hourly 3

» Searches for repositories in dockerhub

List tags in a repository

S udocker search --list-tags centos

5.11 7.5.1804 centos6.10 centos7.6.1810
5 7.6.1810 centos6.6 centos7.7.1908
6.10 7.7.1908 centos6.7 centos7.8.2003
6.6 7.8.2003 centos6.8 centos7.9.2009
6.7 7.9.2009 centos6.9 centos’7

6.8 7 centos6 centos8.1.1911
6.9 8.1.1911 centos7.0.1406 centos8.2.2004
6 8.2.2004 centos7.1.1503 centos8.3.2011
7.0.1406 8.3.2011 centos7.2.1511 centos8
7.1.1503 8 centos7.3.1611 latest
7.2.1511 centos5.11 centos7.4.1708

7.3.1611 centos5 centos7.5.1804

7.4.1708

 This is specific to dockerhub and may not work with other repositories

Pull from other registries

S udocker search quay.io/centos

S udocker pull quay.io/centos/centos:latest

Info: downloading layer sha256:7a0437f04f83f084b7ed68ad9c4a4947e12fc4e1b006b38129bac89114ec3621
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
Info: downloading layer sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4

« The first element in the image name is the registry name in this case quay.io

« The second element is the repository also called library
» The third element is the image name and tag separated by a semicolon

