JePL
(Jenkins Pipeline Library)

Speaker: Samuel Bernardo <samuel@lLlip.pt>
On behalf of WP3

WWwWw.eosc-synergy.eu

mailto:samuel@lip.pt

ePL: what, why and how

Implementation of baseline quality
criteria

Creation and execution of QA pipelines,
Cland CD

Used by SQAaaS components

Development practices improvement
Enable automation of the QA process
Flexible tooling adoption for python
(tox), java (maven) or any other tool

Using docker compose to load the build
tools and environment setup

Easy creation and execution of complex
pipelines for QA

Library leveraging the Jenkins PaC

JePL: https://github.com/indigo-dc/ienkins-pipeline-library Latest: release 2.4.0

https://github.com/indigo-dc/jenkins-pipeline-library

C#
* Jenkins framework provides an implementation of Pipeline as Code (PaC)

» Define pipelined job processes as code, stored and versioned in source repository

» Distributed build environment that provides jobs automation over git platform
events

» Designed for distributed build environments
* Allow to use different environments for each project

 Workload balancing among multiple agents running jobs in parallel

WWW.eosc-synergy.eu

@~

* Jenkins framework provides an implementation of Pipeline as Code (PaC)

@Library(['github.com/indigo-dc/jenkins-pipeline-library@feature/serviceqa']) _
def projectConfig

pipeline {
agent any

stages {
stage('SQA baseline dynamic stages: wordpress')
steps {
script {
projectConfig = pipelineConfig
configFile: './.sqa/config.yml'

buildStages(projectConfig

}
post {
cleanup {

cleanWs

WWW.eosc-synergy.eu

EOSC
SYNERGY

: where PaC become JCasC

* JePL shared library enhances the pipeline with Jenkins Configuration as Code
(JCasC)

* Define pipeline using human-readable configuration files (config.yml)

* Easy means to compose Jenkins code pipelines (Jenkinsfile)

: where PaC become JCasC @

* JePL shared library enhances the pipeline with Jenkins Configuration as Code
(JCasC)

* Support for the criteria defined in the Software & Service QA baselines
* Defined through a config.yml file (added to code repo)

* Built-in support for Python’s tox build tool and Java’'s maven build tool

* Besides that, any tool is already supported with commands property in config.yml

@~

» JePL shared library enhances the pipeline with Jenkins Configuration as Code
(JCasC)

* Support for IM (Infrastructure Manager) and EC3 (Elastic Cloud Computing
Cluster)

* Tools launched with docker-compose and all operations are executed from provided
container maintained by GRyCAP from UPV

* Support kubectl (normal k8s receipts and kustomizations) and helm (helm
charts)

 These tools are used at SvcQC.Dep for the infrastructure and services
deployment

WWW.eosc-synergy.eu

@~

- JePL provides easy adoption of the QA criteria compiled in the SW and
SVC baselines

* Hence, fostering SQA practices on research software, e.g. EOSC services
« EOSC-Synergy Thematic Services are gradually adopting JePL
» JePL requires 3 files, but only one is the fundamental basis—config.yml
 Jenkinsfile & docker-compose.yml are dependencies for automation & resource
provisioning, respectively

WWW.eosc-synergy.eu

EOSC
SYNERGY
< g “

ePL adoption advantages

* JePL focus on supporting:
» Additional QA criteria from the SW

and SVC baselines SQAaaS module

* Additional composers to integrate 2
with different platforms, like K8s selection

* Additional tools delivered as Docker =, 3~
images

Pipeline as a Service

 The SQAaaS solution leverage Compose custoized CICD ipetines for
JePL to graphically compose ——
on-demand CI/CD pipelines
https://sqaaas.eosc-synergy.eu/#/a
uth/select-option

https://sqaaas.eosc-synergy.eu/#/auth/select-option
https://sqaaas.eosc-synergy.eu/#/auth/select-option

EOSC
SYNERGY

enkins instance to check the pipeline logs

- Checks automatically all the s
projects in EOSC Synergy Github
organization:

mmmmmmm

https://aithub.com/EOSC-synergy E——

@2 EOSC-Synergy

. You can also use your own

instance of Jenkins in case of
repositories with restricted access. S —

SRR AR RS

EOSC Synergy Jenkins instance:
https://jenkins.eosc-synergy.eu/job/eosc-synergy-ora/

* You can install a local deployment
of the Jenkins pipeline to run the
tests.

https://github.com/EOSC-synergy
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/

* Includes support for style checking (QC.Sty), unit tests (QC.Uni),
code metadata (QC.Met), licensing (QC.Lic), security (QC.Sec) and
documentation (QC.Doc).

» Configuration files
* The configuration file: config.yml
* The services: docker-compose.yml

* The pipeline: Jenkinsfile

WWW.eosc-synergy.eu

‘i::";f

* Includes support for automated deployment (SvcQC.Dep), API tests
(SvcQC.API), integration tests (SvcQC.Int), functional tests

(SvcQC.Fun), security tests (SvcQC. Sec) and documentation
(QC.Doc).

docke (

* Configuration files are the same

« |IM, EC3, K8s and Helm test pipelines continuous testing of releases

(JePL-*-test
repositories)
« In case of doubts, please open an issue in:

WWW.eosc-synergy.eu

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://github.com/EOSC-synergy/issue-tracker/issues/new/choose

Goal: use JePL to check the compliance of 2 types of criteria
from the SW QA baseline [QC.Sty, QC.Sec]

Test with a real application delivered through the EOSC portal
~ DEEP as a Service:

Mimic the process of JePL adoption by a first-timer
Following the step-by-step quide at:

“~>

Results appear in EOSC-Synergy’s Jenkins instance

~>

WWW.eosc-synergy.eu

https://github.com/indigo-dc/DEEPaaS
https://indigo-dc.github.io/jenkins-pipeline-library/2.0.0/index.html
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/

¥

1. Let's start cloning the code repository (from fork’s master branch):

git clone -b master https://github.com/EOSC-synergy/DEEPaaS

2. Create an “jepl_demo” branch for the JePL-required files:

cd DEEPaaS && git checkout -b jepl demo

WWW.eosc-synergy.eu

3. Create and under the . sqa folder

(pre-composed files, “eosc-synergy” branch):

mkdir .sqa && wget -P .sqga

https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/.sqa/config.yml
https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/.sqa/docker-compose.ym

4. Create the
the documentation:

1

in the repo root path with the code provided in

Jenkinsfile

WWW.eosc-synergy.eu

https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/config.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/docker-compose.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/Jenkinsfile
https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/Jenkinsfile

5. We only need to commit and push the previous changes:
git add .sga Jenkinsfile

git commit -m "Initial skeleton of JePL files"

git push -u origin jepl demo

Now we can see the magic happening and wait for the results

WWW.eosc-synergy.eu

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/job/jepl_demo/

EOSC
SYNERGY

ow difficult is to use JePL to test software?

Full project name: eosc-synergy-org/DEEPaaS/jepl_demo

< / > Recent Changes

Stage View
= SQA baseline =
Declarative: - Environment
dynamic
Checkout SCM Setup
stages
Average stage times: 5s 1min 18s Tmin 22s
[#2

1min 19s 2min 21s

oct11 | No i
1210 [EEs

N Docker
qc_sty Compose
deepaas

cleanup
3min 51s 8s
2min 35s 8s

failed

Goal: use JePL to check the compliance with deployment
criterion from the Service QA baseline [QC.Dep]

Test with a real application from samples available for K8s
~ Wordpress:

Mimic the process of JePL adoption by a first-timer
Following the step-by-step quide at:

“~>

Results appear in EOSC-Synergy’s Jenkins instance

~>

WWW.eosc-synergy.eu

https://github.com/EOSC-synergy/JePL-k8s-test.git
https://indigo-dc.github.io/jenkins-pipeline-library/2.0.0/index.html
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/JePL-k8s-test/

¥

1. Let's start cloning the code repository (from fork’s master branch):

git clone -b master https://github.com/EOSC-synergy/JePL-k8s-test

2. Create an “jepl_demo” branch for the JePL-required files:

cd JePL-k8s-test && git checkout -b jepl demo

WWW.eosc-synergy.eu

3. Create and under the . sqa folder

(pre-composed files, “eosc-synergy” branch):

mkdir .sqa && wget -P .sqga

https://raw.githubusercontent.com/EOSC-synergy/EOSC-synergy/JePL-k8s-test/feature/serviceqa/.sq

a/config.yml

https://raw.githubusercontent.com/EOSC-synergy/EOSC-synergy/JePL-k8s-test/feature/serviceqa/.sq
a/docker-compose.yml

4. Create the
the documentation:

in the repo root path with the code provided in

-0 Jenkinsfile

WWW.eosc-synergy.eu

https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/config.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/docker-compose.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/Jenkinsfile
https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/Jenkinsfile

5. We only need to commit and push the previous changes:
git add .sga Jenkinsfile

git commit -m "Initial skeleton of JePL files"

git push -u origin jepl demo

Now we can see the magic happening and wait for the results

WWW.eosc-synergy.eu

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/job/jepl_demo/

EOSC
SYNERGY

ow difficult is to use JePL to test services?

Full project name: eosc-synergy-org/JePL-k8s-test/feature%2Fserviceqa

< / > Recent Changes

Stage View
SQA baseline
Declarative: dynamic Environment
Checkout SCM stages: Setup
wordpress
Average stage times: 3s 14s 492ms
(Average full run time: ~2min =~ S T—
W #34 52s) |
Spas 3s 16s 606ms
03:18 commit

SvcQC.Dep Cg:k::e
kubectl P
cleanup
4min 4s 19s
L]
2min 1s 14s

EOSC
SYNERGY

AaaS: TSs already using JePL

* Internal JePL usage from SQAaaS services themselves = E o o B O ow ow B
« JePl schema validator (validates JSON schema & builds validator’'s Docker image) -WH - N T Y
+ S0OA2aS Web (builds & publishes production Web) H e v 6 S e
« S0AaaS API (validates OpenAPI spec, builds & publishes APl docs S o e e o

« WP4 thematic services with ready SQA pipelines
« WORSICA htips://jenkins.eosc-synergy.eu/iob/\WORSICA/

« O3AS hitps://jenkins.eosc-synergy.eu/job/eosc-syneray-org/ (03* projects) EOSEomeoamommoop
« SAPS https:/lenkins.eosc-synergy.eu/job/eosc-synergy-ora/ (saps-* projects) == B N
+ LAGO https://ienkins.eosc-syneray.eu/job/eosc-syneray-ora/iob/onedataSim/ = o Bl

- OpenEBench https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/bench_event_api/

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/jpl-validator
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/sqaaas-web/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/sqaaas-api-spec/
https://jenkins.eosc-synergy.eu/job/WORSICA/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/onedataSim/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/bench_event_api/

EOSC
SYNERGY

AaaS: TSs already using JePL

 WP4 thematic services ongoing work with Service QA pipelines
+ WORSICA
- O3AS
- SAPS
- MSWSS
- SCIPION

* More than 20 thematic service repositories are already using JePL

ext steps

SQAaaS Architecture: Web Frontend > OpenAPI > JePL (Jenkins Controller + Agents)

Web Frontend OpenAPI
D- | @ K8s pod . @ K8s pod

Kubernetes Kubernetes

~ Jenkins

@ Jenkins Agents Jenkins Controller
X K8s pod @ K8s pod
U= - -

Kubernetes Kubernetes

l

Git Platform

GitHub

A———

Jenkins Operator
K8s pod

Kubernetes

©

Cloud Source
Repositories

EOSC
SYNERGY

Adopt Kubernetes as
the resource
manager

Jenkins Operator
deployment already
concluded

Improve scalability
of the platform
Bypass GitHub
platform limitations
adding an
on-premises Git
platform

https://app.diagrams.net/?page-id=f106602c-feb2-e66a-4537-3a34d633f6aa&scale=auto#G1yasArWaOPjEc49kIMnmPsv18p_LRZ6bW

ext steps

SQAaaS Architecture: Web Frontend > OpenAPI > JePL (Jenkins Controller + Agents)

Web Frontend OpenAPI
D- | @ K8s pod . @ K8s pod

Kubernetes Kubernetes
Git Platform
~ Jenkins O
@ Jenkins Agents Jenkins Controller GitHub
i.‘a K8s pod @ K8s pod _

Kubernetes Kubernetes @

Jenkins Operator
K8s pod Cloud Source

Repositories

Kubernetes

EOSC
SYNERGY

Support multi-site
deployment using
Fedcloud services
(EGI Load Balancer
and EGI Dynamic
DNS service)

Finish JePL v3 that
will enhance the
integration with K8s
and Jenkins Operator
for the deployments

https://app.diagrams.net/?page-id=f106602c-feb2-e66a-4537-3a34d633f6aa&scale=auto#G1yasArWaOPjEc49kIMnmPsv18p_LRZ6bW

EOSC
SYNERGY

ocumentation

The user's guide is available on the following url
https://indigo-dc.github.io/jenkins-pipeline-library/
SQA baseline

The latest version of the Software QA criteria can be found in
https://indigo-dc.github.io/sga-baseline

The Service QA criteria is currently in development and is available at
https://aithub.com/EQSC-synergy/service-ga-baseline

https://indigo-dc.github.io/jenkins-pipeline-library/
https://indigo-dc.github.io/sqa-baseline
https://github.com/EOSC-synergy/service-qa-baseline

(CAZ0~

[Docs] https://indigo-dc.qithub.io/ienkins-pipeline-library

hanks for your attention

Submit an issue for any JePL-related question through GitHub:
https://github.com/indigo-dc/ienkins-pipeline-library/issues

Keep posted for EOSC-Synergy SQAaaS developments:
https://aithub.com/EQSC-synergy/

WWwWw.eosc-synergy.eu

https://indigo-dc.github.io/jenkins-pipeline-library
https://github.com/indigo-dc/jenkins-pipeline-library/issues
https://github.com/EOSC-synergy/

