
www.eosc-synergy.euwww.eosc-synergy.eu

JePL
(Jenkins Pipeline Library)

Speaker: Samuel Bernardo <samuel@lip.pt>
On behalf of WP3

mailto:samuel@lip.pt

www.eosc-synergy.eu

JePL: what, why and how

JePL: https://github.com/indigo-dc/jenkins-pipeline-library Latest: release 2.4.0

2

Using human-readable YAML
format instead of Jenkins
Groovy-based language

How
● Using docker compose to load the build

tools and environment setup
● Easy creation and execution of complex

pipelines for QA
● Library leveraging the Jenkins PaC

Facilitates adoption of DevOps
practicesWhy

● Development practices improvement
● Enable automation of the QA process
● Flexible tooling adoption for python

(tox), java (maven) or any other tool

Core component of the
SQAaaS platformWhat

● Implementation of baseline quality
criteria

● Creation and execution of QA pipelines,
CI and CD

● Used by SQAaaS components

https://github.com/indigo-dc/jenkins-pipeline-library

www.eosc-synergy.eu

JePL: where PaC become JCasC
• Jenkins framework provides an implementation of Pipeline as Code (PaC)

• Define pipelined job processes as code, stored and versioned in source repository

• Distributed build environment that provides jobs automation over git platform
events

• Designed for distributed build environments

• Allow to use different environments for each project

• Workload balancing among multiple agents running jobs in parallel

3

www.eosc-synergy.eu

JePL: where PaC become JCasC
• Jenkins framework provides an implementation of Pipeline as Code (PaC)

4

www.eosc-synergy.eu

JePL: where PaC become JCasC
• JePL shared library enhances the pipeline with Jenkins Configuration as Code

(JCasC)

• Define pipeline using human-readable configuration files (config.yml)

• Easy means to compose Jenkins code pipelines (Jenkinsfile)

5

www.eosc-synergy.eu

JePL: where PaC become JCasC
• JePL shared library enhances the pipeline with Jenkins Configuration as Code

(JCasC)

• Support for the criteria defined in the Software & Service QA baselines

• Defined through a config.yml file (added to code repo)

• Built-in support for Python’s tox build tool and Java’s maven build tool

• Besides that, any tool is already supported with commands property in config.yml

6

www.eosc-synergy.eu

JePL: where PaC become JCasC
• JePL shared library enhances the pipeline with Jenkins Configuration as Code

(JCasC)

• Support for IM (Infrastructure Manager) and EC3 (Elastic Cloud Computing
Cluster)

• Tools launched with docker-compose and all operations are executed from provided
container maintained by GRyCAP from UPV

• Support kubectl (normal k8s receipts and kustomizations) and helm (helm
charts)

• These tools are used at SvcQC.Dep for the infrastructure and services
deployment

7

www.eosc-synergy.eu

JePL adoption advantages

• JePL provides easy adoption of the QA criteria compiled in the SW and
SVC baselines

• Hence, fostering SQA practices on research software, e.g. EOSC services
• EOSC-Synergy Thematic Services are gradually adopting JePL

• JePL requires 3 files, but only one is the fundamental basis→config.yml
• Jenkinsfile & docker-compose.yml are dependencies for automation & resource

provisioning, respectively

8

www.eosc-synergy.eu

JePL adoption advantages

• JePL focus on supporting:
• Additional QA criteria from the SW

and SVC baselines
• Additional composers to integrate

with different platforms, like K8s
• Additional tools delivered as Docker

images
• The SQAaaS solution leverage

JePL to graphically compose
on-demand CI/CD pipelines
https://sqaaas.eosc-synergy.eu/#/a
uth/select-option

9

https://sqaaas.eosc-synergy.eu/#/auth/select-option
https://sqaaas.eosc-synergy.eu/#/auth/select-option

www.eosc-synergy.eu

Jenkins instance to check the pipeline logs

• Checks automatically all the
projects in EOSC Synergy Github
organization:
https://github.com/EOSC-synergy

• You can also use your own
instance of Jenkins in case of
repositories with restricted access.

• You can install a local deployment
of the Jenkins pipeline to run the
tests.

EOSC Synergy Jenkins instance:
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/

10

https://github.com/EOSC-synergy
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/

www.eosc-synergy.eu

JePL: Software Quality Assurance (SQA)

• Includes support for style checking (QC.Sty), unit tests (QC.Uni),
code metadata (QC.Met), licensing (QC.Lic), security (QC.Sec) and
documentation (QC.Doc).

• Configuration files

• The configuration file: config.yml

• The services: docker-compose.yml

• The pipeline: Jenkinsfile

11

www.eosc-synergy.eu

JePL: Service Quality Assurance (SvcQA)

• Includes support for automated deployment (SvcQC.Dep), API tests
(SvcQC.API), integration tests (SvcQC.Int), functional tests
(SvcQC.Fun), security tests (SvcQC.Sec) and documentation
(QC.Doc).

• Configuration files are the same

• IM, EC3, K8s and Helm test pipelines continuous testing of releases
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/ (JePL-*-test
repositories)

• In case of doubts, please open an issue in:
https://github.com/EOSC-synergy/issue-tracker/issues/new/choose

12

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://github.com/EOSC-synergy/issue-tracker/issues/new/choose

www.eosc-synergy.eu

How difficult is to use JePL to test software?

Goal: use JePL to check the compliance of 2 types of criteria
from the SW QA baseline [QC.Sty, QC.Sec]

• Test with a real application delivered through the EOSC portal
⇝ DEEP as a Service: https://github.com/indigo-dc/DEEPaaS

• Mimic the process of JePL adoption by a first-timer
• Following the step-by-step guide at:

⇝ https://indigo-dc.github.io/jenkins-pipeline-library/

• Results appear in EOSC-Synergy’s Jenkins instance
⇝ https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/

13

https://github.com/indigo-dc/DEEPaaS
https://indigo-dc.github.io/jenkins-pipeline-library/2.0.0/index.html
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/

www.eosc-synergy.eu

How difficult is to use JePL to test software?

1. Let's start cloning the code repository (from fork’s master branch):

git clone -b master https://github.com/EOSC-synergy/DEEPaaS

2. Create an “jepl_demo” branch for the JePL-required files:

cd DEEPaaS && git checkout -b jepl_demo

14

www.eosc-synergy.eu

How difficult is to use JePL to test software?

3. Create config.yml and docker-compose.yml under the .sqa folder
(pre-composed files, “eosc-synergy” branch):

mkdir .sqa && wget -P .sqa

https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/.sqa/config.yml

https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/.sqa/docker-compose.yml

4. Create the Jenkinsfile in the repo root path with the code provided in
the documentation:

wget https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/Jenkinsfile -O

Jenkinsfile

15

https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/config.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/docker-compose.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/Jenkinsfile
https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/Jenkinsfile

www.eosc-synergy.eu

How difficult is to use JePL to test software?

5. We only need to commit and push the previous changes:

git add .sqa Jenkinsfile

git commit -m "Initial skeleton of JePL files"

git push -u origin jepl_demo

Now we can see the magic happening and wait for the results
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/job/jepl_demo/

16

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/job/jepl_demo/

www.eosc-synergy.eu

How difficult is to use JePL to test software?

17

www.eosc-synergy.eu

How difficult is to use JePL to test services?

Goal: use JePL to check the compliance with deployment
criterion from the Service QA baseline [QC.Dep]

• Test with a real application from samples available for K8s
⇝ Wordpress: https://github.com/EOSC-synergy/JePL-k8s-test.git

• Mimic the process of JePL adoption by a first-timer
• Following the step-by-step guide at:

⇝ https://indigo-dc.github.io/jenkins-pipeline-library/

• Results appear in EOSC-Synergy’s Jenkins instance
⇝ https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/JePL-k8s-test/

18

https://github.com/EOSC-synergy/JePL-k8s-test.git
https://indigo-dc.github.io/jenkins-pipeline-library/2.0.0/index.html
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/JePL-k8s-test/

www.eosc-synergy.eu

How difficult is to use JePL to test services?

1. Let's start cloning the code repository (from fork’s master branch):

git clone -b master https://github.com/EOSC-synergy/JePL-k8s-test

2. Create an “jepl_demo” branch for the JePL-required files:

cd JePL-k8s-test && git checkout -b jepl_demo

19

www.eosc-synergy.eu

How difficult is to use JePL to test services?

3. Create config.yml and docker-compose.yml under the .sqa folder
(pre-composed files, “eosc-synergy” branch):

mkdir .sqa && wget -P .sqa

https://raw.githubusercontent.com/EOSC-synergy/EOSC-synergy/JePL-k8s-test/feature/serviceqa/.sq

a/config.yml

https://raw.githubusercontent.com/EOSC-synergy/EOSC-synergy/JePL-k8s-test/feature/serviceqa/.sq

a/docker-compose.yml

4. Create the Jenkinsfile in the repo root path with the code provided in
the documentation:

wget https://raw.githubusercontent.com/EOSC-synergy/JePL-k8s-test/feature/serviceqa/Jenkinsfile

-O Jenkinsfile

20

https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/config.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/.sqa/docker-compose.yml
https://github.com/EOSC-synergy/DEEPaaS/blob/eosc-synergy/Jenkinsfile
https://raw.githubusercontent.com/EOSC-synergy/DEEPaaS/eosc-synergy/Jenkinsfile

www.eosc-synergy.eu

How difficult is to use JePL to test services?

5. We only need to commit and push the previous changes:

git add .sqa Jenkinsfile

git commit -m "Initial skeleton of JePL files"

git push -u origin jepl_demo

Now we can see the magic happening and wait for the results
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/JePL-k8s-test//job/jepl_demo/

21

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/DEEPaaS/job/jepl_demo/

www.eosc-synergy.eu

How difficult is to use JePL to test services?

22

www.eosc-synergy.eu

SQAaaS: TSs already using JePL

• Internal JePL usage from SQAaaS services themselves
• JePL schema validator (validates JSON schema & builds validator’s Docker image)

• SQAaaS Web (builds & publishes production Web)

• SQAaaS API (validates OpenAPI spec, builds & publishes API docs

• WP4 thematic services with ready SQA pipelines

• WORSICA https://jenkins.eosc-synergy.eu/job/WORSICA/
• O3AS https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/ (o3* projects)
• SAPS https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/ (saps-* projects)
• LAGO https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/onedataSim/
• OpenEBench https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/bench_event_api/

23

https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/jpl-validator
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/sqaaas-web/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/sqaaas-api-spec/
https://jenkins.eosc-synergy.eu/job/WORSICA/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/onedataSim/
https://jenkins.eosc-synergy.eu/job/eosc-synergy-org/job/bench_event_api/

www.eosc-synergy.eu

SQAaaS: TSs already using JePL

• WP4 thematic services ongoing work with Service QA pipelines
• WORSICA
• O3AS
• SAPS
• MSWSS
• SCIPION

• More than 20 thematic service repositories are already using JePL

24

www.eosc-synergy.eu

Next steps
● Adopt Kubernetes as

the resource
manager

● Jenkins Operator
deployment already
concluded

● Improve scalability
of the platform

● Bypass GitHub
platform limitations
adding an
on-premises Git
platform

25

https://app.diagrams.net/?page-id=f106602c-feb2-e66a-4537-3a34d633f6aa&scale=auto#G1yasArWaOPjEc49kIMnmPsv18p_LRZ6bW

www.eosc-synergy.eu

Next steps
● Support multi-site

deployment using
Fedcloud services
(EGI Load Balancer
and EGI Dynamic
DNS service)

● Finish JePL v3 that
will enhance the
integration with K8s
and Jenkins Operator
for the deployments

26

https://app.diagrams.net/?page-id=f106602c-feb2-e66a-4537-3a34d633f6aa&scale=auto#G1yasArWaOPjEc49kIMnmPsv18p_LRZ6bW

www.eosc-synergy.eu

Documentation

The user's guide is available on the following url

https://indigo-dc.github.io/jenkins-pipeline-library/

SQA baseline

The latest version of the Software QA criteria can be found in
https://indigo-dc.github.io/sqa-baseline

The Service QA criteria is currently in development and is available at
https://github.com/EOSC-synergy/service-qa-baseline

27

https://indigo-dc.github.io/jenkins-pipeline-library/
https://indigo-dc.github.io/sqa-baseline
https://github.com/EOSC-synergy/service-qa-baseline

www.eosc-synergy.euwww.eosc-synergy.eu

Thanks for your attention
[Docs] https://indigo-dc.github.io/jenkins-pipeline-library

Submit an issue for any JePL-related question through GitHub:
https://github.com/indigo-dc/jenkins-pipeline-library/issues

Keep posted for EOSC-Synergy SQAaaS developments:
https://github.com/EOSC-synergy/

https://indigo-dc.github.io/jenkins-pipeline-library
https://github.com/indigo-dc/jenkins-pipeline-library/issues
https://github.com/EOSC-synergy/

