

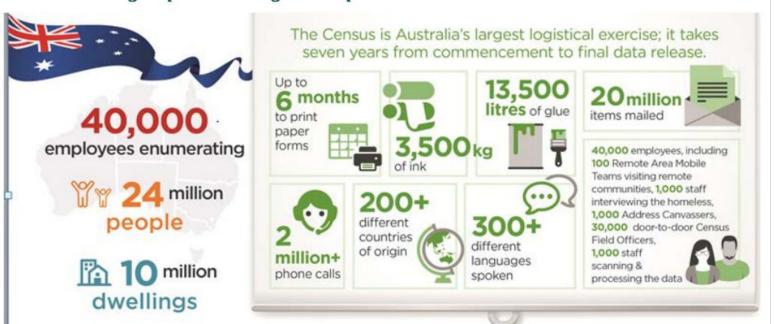
Serverless Services for Scientific Cloud Computing

IberGrid 2022 Conference

Germán Moltó - gmolto@dsic.upv.es
Sebastián Risco - srisco@i3m.upv.es
Vicent Giménez - vigial@posgrado.upv.es
Miguel Caballer - micafer@i3m.upv.es

Agenda

- Motivation for Serverless Computing
- SCAR
- OSCAR
- MARLA
- TaSCaaS
- Summary



Motivation: Head Count

"Australia's largest peacetime logistical operation"

Motivation: Trusting Your Partners

- The Australian Bureau of Statistics, through open tender, awarded IBM a \$9.6M a contract to implement an eCensus solution for 2016.
- ABS wisely tendered for services to "Perform Load Testing" (\$469K out of which \$325K was spent on software licenses).

CN ID: CN2641301

Agency: Australian Bureau of Statistics

Publish Date: 27-Oct-2014

Category: Software maintenance and support

Contract Period: 1-Oct-2014 to 31-Oct-2016

Contract Value (AUD): \$9,606,725.00

Description: Design, development and implementation of

eCensus Solution 2016

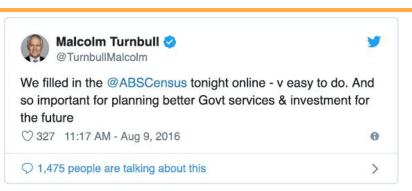
Procurement Method: Limited tender

Confidentiality - Contract: No Confidentiality - Outputs: No Consultancy: No

Agency Reference ID: ABS2014.105

Supplier Details

Name: IBM Australia Ltd Postal Address: 8 Brisbane Ave


Town/City: Barton
Postcode: 2600
State/Territory: ACT
Country: AUSTRALIA

ABN: 79 000 024 733

Motivation: A Story in Three Acts

https://twitter.com/TurnbullMalcolm/status/7629407638019891

<u>21</u>

https://twitter.com/narelleford/status/762984702915465216

https://twitter.com/ABSStats/status/762961251764805633

Given that millions of Australians can play Pokemon Go at once and it doesn't crash is a good reason to outsource the census to Nintendo

Tim Beshara (@Tim_Beshara) August 9, 2016

Motivation: Official vs Unofficial

- Official Statement (13/10/2016) from the
 Office of Cyber Security Special Adviser:
 - [...] although the site withstood an initial DDoS attack and was coping with over 7,000 census forms a minute, a second and third attack took it down
- Critics: The system was believed to have been built on IBM WebSphere and run on IBM Softlayer (on-premises Cloud) instead of on a public Cloud.

Motivation: A Surprising Turn of Events

 A couple of students, without prior experience in AWS, developed a serverless system over a weekend supporting 4 times the workload used to test IBM's system for \$500 \$30

https://eftm.com/2016/08/how-two-uni-students-built-a-better-census-site-in-just-54-hours-for-500-3075

Motivation: Standing on the Shoulders of Giants

- How could these be possible?
- Students had used AWS Lambda, a massively scalable serverless platform for event-driven computing.
- Serverless: Event-driven computation on a computing platform entirely managed by the Cloud provider

https://twitter.com/werner/status/765599106387542016

Motivation: Long Story Short

- IBM reportedly payed \$30M to the Australian government as reports are released from two inquiries into DDoS attacks on census website.
- PwC Australia operated Australian 2021 Digital Census on (quick poll):

Serverless Computing

Event-driven computing on highly-elastic services with fine-grained billing managed by the Cloud provider.

Storage

Amazon **S3**

AWS IoT

Compute

AWS Lambda

Database

Amazon DynamoDB

Gateways

Amazon API Gateway

Queues

Amazon SQS

Messaging

Amazon SNS

Amazon Kinesis

User Management

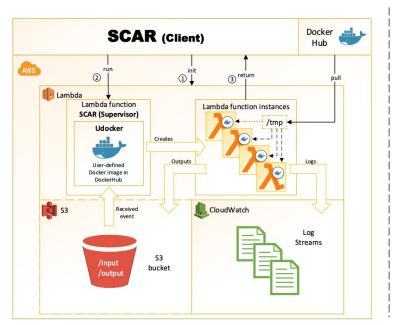
Amazon Cognito

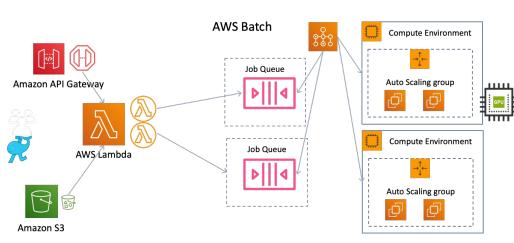
Machine Learning

Amazon Machine Learning

SCAR - https://github.com/grycap/scar

- Framework to execution Docker-based applications in AWS Lambda
 - Highly-parallel event-driven file-processing serverless applications that execute on customized runtime environments provided by Docker containers run on AWS Lambda (thanks to uDocker)
 - Pioneered the usage of Docker containers in AWS Lambda since 2017 (native support in AWS Lambda introduced end of 2020, now available in SCAR)
 - Featured in the CNCF Cloud Native Interactive Landscape (>500 stars in GitHub): https://landscape.cncf.io/serverless?selected=scar
- Integrated with API Gateway for HTTP-based scalable endpoints
- Integrated with AWS Batch for cloud-bursting into scalable virtual HPC-based clusters (even with GPU support).

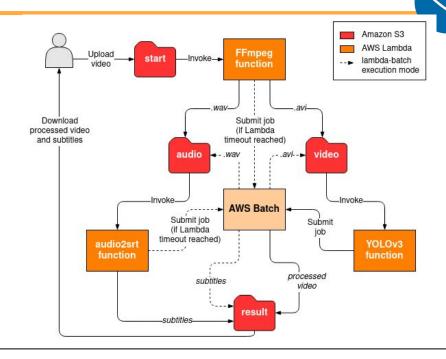




BE ANYWHERE

SCAR - Architecture

Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based architectures. *Future Generation Computer Systems*, 83, 50–59. https://doi.org/10.1016/j.future.2018.01.022



SCAR - Sample Workflow for Multimedia Processing

- Lambda functions for audio processing
- AWS Batch jobs for video processing

Risco, S., & Moltó, G. (2021). GPU-Enabled Serverless Workflows for Efficient Multimedia Processing. *Applied Sciences*, *11*(4), 1438. https://doi.org/10.3390/app11041438

OSCAR - https://oscar.grycap.net

- Open Source Serverless
 Computing for Data-Processing
 Applications (OSCAR)
 - Serverless computing for Docker-based computationally-intensive applications on elastic Kubernetes clusters deployed on multi-Clouds.
- Mimics the event-driven computational paradigm of SCAR but for on-premises (or public) Clouds.

Key Features

Multi-Cloud Support

Provision OSCAR clusters on on-premises, public and federated Clouds

Elasticity

Kubernetes clusters grow and shrink according to the workload

Workflows

Compose data-driven serverless workflows with a Functions Definition Language

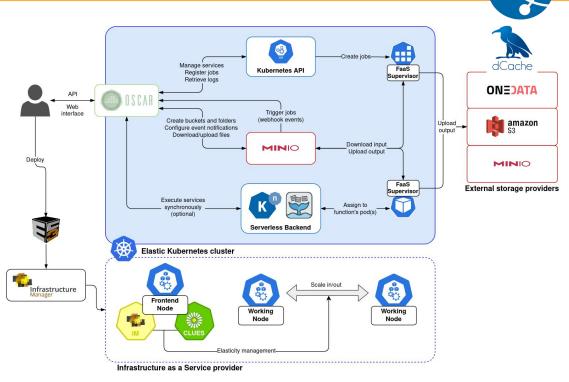
Flexible Interfaces

REST API, Web-based GUI and CLI (Commandline Interface)

Built on Kubernetes

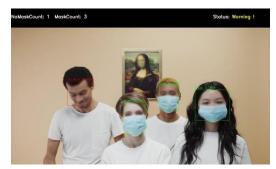
OSCAR's services use Kubernetes components for easier extensibility

Open Source


Distributed under the Apache 2.0 License in GitHub. Also offered as

OSCAR - Architecture

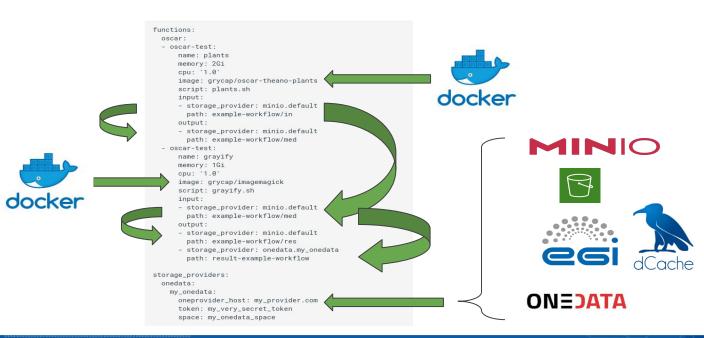
- Dynamic provisioning of Kubernetes clusters on multiple Clouds thanks to the Infrastructure Manager (IM) - https://im.eqi.eu
- Horizontally scalable
 Kubernetes clusters
 thanks to CLUES https://github.com/grycap/clues

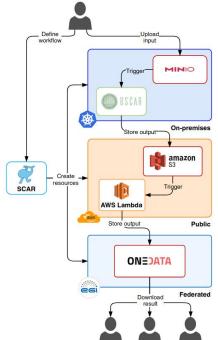


OSCAR - A Sample Use Case

- Mask Detection usage
- Combination of a cluster of Raspberry PIs (edge) and dynamically provisioned resources from EGI for AI inference along the computing continuum

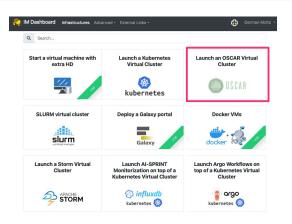
MINIO -for long-term-Anon and split Upload anonymised ONEDATA Store result MINIO -for long-term- persistence Check result


https://oscar.grycap.net/blog/post-oscar-cloud-to-edge-approach-for-edge-ai-inference/



OSCAR + SCAR + EGI

Functions Definition Language (FDL)





OSCAR - Interfaces

Composer:

https://composer.oscar.grycap.net

Deployment:

Infrastructure Manager (IM) Dashboard: https://im.eqi.eu

Web-based UI:

https://ui.oscar.grycap.net

github.com/grycap/oscar-cli

MARLA - https://github.com/grycap/marla

- Deploy a serverless MapReduce processing engine on AWS Lambda.
- Files uploaded to Amazon S3
 trigger the execution of the
 (parallel invocation of the)
 functions to concurrently process
 the dataset.

Input bucket

S3 event

Results

Results

V. Giménez-Alventosa, G. Moltó, and M. Caballer, "A framework and a performance assessment for serverless MapReduce on AWS Lambda," *Futur. Gener. Comput. Syst.*, vol. 97, pp. 259–274, Aug. 2019, doi: 10.1016/j.future.2019.02.057

Mapper

Store mapped data chunks

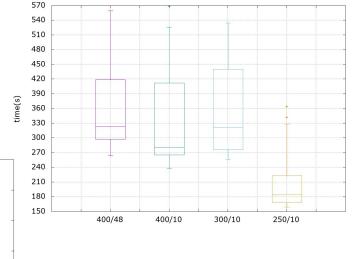
Reduce mapped data chunks

MARLA

The experimental results unveiled that serverless platforms provide inhomogenous computing power that impacts coupled-computing executions of parallel jobs.

30

25


20

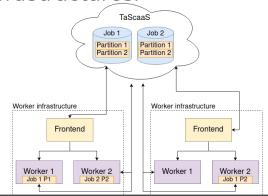
10

5

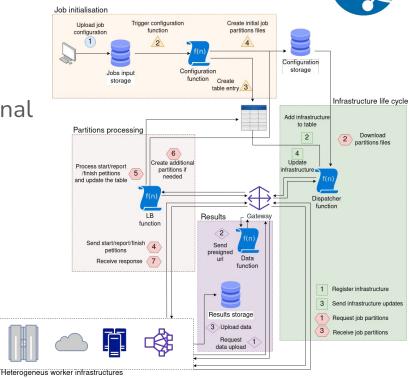
0

time(s) 15

V. Giménez-Alventosa, G. Moltó, and M. Caballer, "A framework and a performance assessment for serverless MapReduce on AWS Lambda," Futur. Gener. Comput. Syst., vol. 97, pp. 259–274, Aug. 2019, doi: 10.1016/j.future.2019.02.057


2

Test number



TaScaaS - https://github.com/grycap/tascaas

Task Scheduler As A Service (TaScaaS)
 provides a complete serverless service to
 schedule and distribute High Throughput
 Computing (HTC) jobs among computational
 infrastructures.

V. Gimenez-Alventosa, G. Molto, and J. D. Segrelles, "TaScaaS: A Multi-Tenant Serverless Task Scheduler and Load Balancer as a Service," IEEE Access, vol. 9, pp. 125215–125228, 2021, doi: 10.1109/ACCESS.2021.3109972.

Conclusions

- Event-driven computing allows to perform computing in response to events (such as file uploads) on a serverless platform which provides automated elasticity for dynamic resource provisioning.
- SCAR executes generic applications on AWS Lambda and automated extension to AWS Batch to allow elastic CPU/GPU batch computing on the Cloud.
- OSCAR implements the event-driven computing model of SCAR in on-premises Clouds, integrated with EGI services (EGI DataHub and EGI Federated Cloud).
- Innovative services can be developed on the foundations of serverless computing platforms, such as MARLA and TaSCaaS.

Contact

Germán Moltó gmolto@dsic.upv.es

Instituto de Instrumentación para la Imagen Molecular (I3M)

Universitat Politècnica de València

Grant PID2020-113126RB-I00 funded by MCIN/AEI/10.13039/501100011033. Project PDC2021-120844-I00 funded by MCIN/AEI/10.13039/501100011033 funded by the European Union NextGenerationEU/PRTR Part of this work was supported by the project AI-SPRINT "AI in Secure Privacy-Preserving Computing Continuum" that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under

