Muon acceleration in plasma-based accelerators

Chiara Badiali

Jorge Vieira et al.

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt **|| golp**.tecnico.ulisboa.pt

Historical evolution of particle accelerators

Do we want to continue to go for bigger and bigger accelerators?

Ernest Lawrence 🤎 with the first circular accelerator, the **cyclotron** LHC, currently the most powerful particle accelerator in the world (13 TeV)

FCC: 100 TeV of expected energy for hadrons

~ 8.6 km

Fermi's idea of a circular collider around the world

Historical evolution of particle accelerators

Do we want to continue to go for bigger and bigger accelerators?

Conventional accelerators

Electric field < 100 MV/m

Limitation set by the material breakdown

Plasma accelerators

Plasmas, unlike any other medium are **naturally broken** \rightarrow able to achieve **ultra-high gradient acceleration**.

Why a muon collider?

Furthermore, $m_{\mu} = 200 \ m_e$ so that:

Muons have a finite life-time $(2.2 \ \mu s) \rightarrow$ We have to accelerate them quickly them before they decay, exploiting the time-life dilation in the lab reference frame given by the Lorentz boost ($\tau' = \gamma \tau$) \rightarrow advantage in using plasma based accelerators.

K. R. Long et al., Nature Physics **17**, pages 289–292 (2021)

Muons, like electrons, are **fundamental particles**, for this reason their full energy is available in collisions

 \rightarrow a **I4 TeV** muon collider with sufficient enough luminosity would provide similar discovery reach as a **I00 TeV** proton-proton collider.

$$\frac{e^{-}/\mu^{-}}{\Delta E_{e}} = \left(\frac{m_{e}}{m_{\mu}}\right)^{4} \sim 10^{-12}$$

Muon production: proton beam against a dense target

μ^{-} production in the earth's atmosphere

10³ Ν_μ

10²

10

* J.Allison et al., Nucl. Instrum. Meth.A 835 (2016) 186-225.

A **GEANT4*** simulation with a proton beam of $5 \cdot 10^6$ monoenergetic protons ($E_p = 450 \text{ GeV}$) was performed (in reality ~ 10^{12} protons).

Current results in a nutshell

Simulation results obtained with the **particle-in-cell code OSIRIS***

BACK UP SLIDES

Testing of the analytical model in 2D using OSIRIS

Moving window at **0.95c** Initial velocity of the muons of **0.9c**

Optical space-time wave packets with arbitrary group velocities

The group velocity of an optical pulse can usually be modified in the propagation in a material.

In free space, we can sculpt optical pulses with a modulation of the spatial and temporal degrees of freedom.

Spatio-temporal wave packets: each spatial frequency is uniquely associated with a specific temporal frequency (or wavelength)

Kondakci, H. Esat; Abouraddy, Ayman F., Nature Communications, 10, Article number: 929 (2019) https://doi.org/10.1038/s41467-019-08735-8

Optical space-time wave packets with arbitrary group velocities

OSIRIS 2D simulations of subluminal space-time wake packets*

*B. Malaca et al., in preparation

Instabilities in the propagation of the pulses in a larger plasma

The Raman scattering can be characterised as the **resonant decay**:

Where, for energy conservation reasons:

$$(|) \qquad \begin{array}{l} \omega_0 = \omega_s + \omega_{ek} \\ \overrightarrow{k}_0 = \overrightarrow{k}_s + \overrightarrow{k} \end{array} \qquad \begin{array}{l} \omega_0 \gtrsim 2\omega_{pe} \\ (n \lesssim n_{cr}/4) \end{array}$$

Could this be associated with Raman scattering?

Nonetheless, we still don't know the nature of this instability, it could be also **numerical** (it seems to disappear after a while).

$$\overrightarrow{k}_0 = \overrightarrow{k}_s + \overrightarrow{k}$$

Motivation

Where does the idea of a muon accelerator come from?

Muons production

Testing with Monte Carlo simulations

Plasma acceleration for non-relativistic particles

Using subluminal space-time wave packets

Accelerating driver pulses

Toward higher acceleration energies

Future work and conclusions

Analytical model of acceleration of μ^- with accelerating drivers

An acceleration method, using an external field with a time dependent phase velocity to accelerate non relativistic particles has been developed.

Imposing the phase-locking condition ($\beta_z(t) = \beta_{\phi}(t)$), we find:

This analytical model has first been tested in ID using Mathematica, and then in 2D using the particle-in-cell code OSIRIS.

Future video of muons not catching the wake for the acceleration

$$\left(\frac{qE_0t}{mc} + \beta_0\right)^2 + \left(\frac{qE_0t}{mc} + \beta_0\right)^2$$

With
$$\beta_z \to 1$$
 for $t \to \infty$
and $\beta_z(t=0) = \beta_0$

Energy gain in the analytical model

Expected energy gain:

~14% of the muons are accelerated by 300% of their initial energy.

Plasma ramp for the "acceleration" of the plasma wake

Plasma ramp for the "acceleration" of the plasma wake

$$z_B = v_g t$$

 $z_A = v_g t - \lambda_p(n_p)$

S. Bulanov et al, Phys. Rev. E 58, R5257(R) – Published 1 November (1998), https://doi.org/10.1103/PhysRevE.58.R5257

$$v_B = v_g$$

$$v_{A} = \frac{dz_{A}}{dt} = v_{g} - \frac{d\lambda_{p}(n_{p})}{dt} = v_{g} - \frac{\partial\lambda_{p}}{\partial n_{p}}\frac{\partial n_{p}}{\partial t}$$

Plasma ramp for the "acceleration" of the plasma wake

 $z_B = v_g t$

 $z_A = v_g t - \lambda_p(n_p)$

This accordion effect results in an acceleration of the back of the plasma wake \rightarrow it could help us to extend the acceleration distance.

S. Bulanov et al, Phys. Rev. E 58, R5257(R) – Published 1 November (1998), https://doi.org/10.1103/PhysRevE.58.R5257

$$v_B = v_g$$

$$v_{A} = \frac{dz_{A}}{dt} = v_{g} - \frac{d\lambda_{p}(n_{p})}{dt} = v_{g} - \frac{\partial\lambda_{p}}{\partial n_{p}}\frac{\partial n_{p}}{\partial t}$$

Conclusions & Future Work

Plasma accelerators could be substantial advantages in the acceleration of muons

They could accelerate them before they decay, mitigating muon decay losses.

Plasma acceleration using subluminal drivers has been tested

OSIRIS simulations

We show phase-locking for a realistic distribution of non-relativistic muons

- will be invastigated to try to replicate the theoretical external field proposed.

3D OSIRIS simulations of the acceleration method proposed will be performed

Using space-time optical wave packets, the acceleration of non-relativistic muons has been observed with 2D

The method proposed has been first analytically developed and then tested using 2D OSIRIS simulations ➡ In the future, an implementation of a combination of optical wave packets in free space and plasma ramps

Acknowledgments

Simulation results obtained at MareNostrum (BSC).

Thank you for your attention

C Badiali | EPP Weekly Meeting | April 8th, 2022