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Main Challenge: the QGP is extremely short lived (10-24 s)

Solution: Probe it with (high-momentum) particles 

produced concurrently with the collision!
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Jets as probes of the Quark-Gluon Plasma

Particles created during the collision radiate until 

the hadronisation scale: This is a multi-scale object!
Decreasing Energy Scale

In-medium cascades encode the QGP evolution!

Experimental access is restricted to 

final state hadrons

Solution: Cluster 
them pairwise into 

jets

Note: The jet 
definition is always 

ambiguous!
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We begin by 
focusing on the 
jets
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Jet definitions: Clustering algorithms

Sequential algorithms: minimise distance between pairs 

Use the generalised-kT measure:
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Jet definitions: Clustering algorithms

Sequential algorithms: minimise distance between pairs 

Use the generalised-kT measure:

Different choices available:  

Cambridge/Aachen (C/A) : Angular ordering

Anti-kT : Tags hard partons

A different choice: 

Clusters jets according to splitting formation time!

This is the τ algorithm
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τ algorithm: Jet quenching classifier
Consider the jet formation time (1st splitting): 
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Harder fragmentation means longer τ. 

Medium sample biased towards larger times.

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)][Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]
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"Late" jets : τ > 3 fm/c (weakly modified)

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)][Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]
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RAA ≈ 1 (almost no suppression)

A jet quenching classifier:
Important step towards a tomographic analysis of the QGP!

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)][Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]
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Next, consider 
the parton 
cascade

The building blocks
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M :

M† :

t t0

Three distinct regions for       :The gluon emission spectrum:

Emission kernel : During the gluon formation

Broadening factor: After gluon emission

Assumptions:

Time independent scattering potentials

No momentum broadening for the quark (eikonal limit)

Lifting these restrictions is a crucial step in improving 

our theoretical description of in-medium cascades

Medium-modified gluon emission
[On-going work...]
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Summary

Heavy ion collisions are the perfect laboratory to study the Quark-Gluon Plasma.

The QGP is a hot, dense state of matter exhibiting collective behaviour.

Jets are multi-scale objects encoding the time-evolution of the QGP.

By carefully clustering jets, we can estimate their formation times! 

This is a quenching classifier - an important step towards QGP tomography!

The theoretical description of in-medium parton cascades must be extended:

To time-dependent media.

Beyond the soft limit.
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Thank you!



11

Jet-Shower Correlation 
[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]
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Jet-Shower Correlation 
[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

Diagonal: True Correlation
Vertical Band: Emissions outside jet cone
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SoftDrop grooming: Keep only those splittings with
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Jet-Shower Correlation - Groomed jets
[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

Jet grooming improves the correlation considerably!
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[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

Correlation between parton shower and unclustering:

τ algorithm: Estimating τform
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[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

Correlation between parton shower and unclustering:
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Correlation between parton shower and unclustering:
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[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

Correlation between parton shower and unclustering:
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An unbiased estimator of formation time!

τ algorithm: Estimating τform
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Δτform: Vacuum vs Medium samples
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10− 8− 6− 4− 2− 0 2 4 6 8 10 12
)

+Q3

-Q1
(Q2formτ∆

0.1−

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p
 e

xp
o

n
e

n
t

= 5.02 TeV
NN

sPYTHIA 8 

> 300 GeV
T

R = 0.5 p
T

Anti-k

T
Recluster: Generalized k

 = 0β= 0.1, 
cut

Soft-Drop: z

Vacuum Samples

p=0.5 yields the most centred, symmetric distributions.

The τ algorithm provides an unbiased estimator of the jet 
formation time

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]
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Dyson-Schwinger equations
[On-going work...]

Emission Kernel Broadening Factor

M :

M† :

t t0

Scattering potential, 
complicated functional form

Path integral 
(complicates numerical treatment)

The collision rate 
(Coulomb-like at large q)

Emission kernel

Broadening factor

Evaluation can be simplified by using Dyson-Schwinger type equations:

Can this be extended to time-
dependent potentials, beyond the 

soft limit?

[Andrés, Apolinário, Dominguez :: JHEP 2020, 114 (2020)]


