Jetography in Heavy Ion Collisions

André Cordeiro LIP-Pheno

Supervisors: Liliana Apolinário (LIP/IST) Guilherme Milhano (LIP/IST) Néstor Armesto (USC)

7th IDPASC/LIP Students Workshop Coimbra, July 2022

Why we study heavy ion collisions

- Quantum matter in extreme conditions: explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

Why we study heavy ion collisions

- Quantum matter in extreme conditions: explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

Why we study heavy ion collisions

- Quantum matter in extreme conditions: explore the QCD phase diagram
- **Collectivity:** emergent behaviour from fundamental d.o.f.
- **Cosmology:** the QGP filled the early universe

Main Challenge: the QGP is extremely short lived (10⁻²⁴ s)

Solution: Probe it with (high-momentum) particles produced concurrently with the collision!

Particles created during the collision radiate until

the hadronisation scale: This is a multi-scale object!

Particles created during the collision radiate until

the hadronisation scale: This is a multi-scale object!

In-medium cascades encode the QGP evolution!

Particles created during the collision radiate until

the hadronisation scale: This is a multi-scale object!

In-medium cascades encode the QGP evolution!

Decreasing Energy Scale

Experimental access is restricted to

final state hadrons

Particles created during the collision radiate until

the hadronisation scale: This is a multi-scale object!

In-medium cascades encode the QGP evolution!

Experimental access is restricted to

final state hadrons

Particles created during the collision radiate until

the hadronisation scale: This is a multi-scale object!

In-medium cascades encode the QGP evolution!

Decreasing Energy Scale

Experimental access is restricted to

final state hadrons

We begin by focusing on the iets

Sequential algorithms: minimise distance between pairs

• Use the generalised-k_T measure:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R^2 = \Delta \eta^2 + \Delta \phi^2$$

Sequential algorithms: minimise distance between pairs

• Use the generalised-k_T measure:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R^2 = \Delta \eta^2 + \Delta \phi^2$$

• Different choices available:

p = -1 Anti-k_T : Tags hard partons

p=0 Cambridge/Aachen (C/A) : Angular ordering

Sequential algorithms: minimise distance between pairs

• Use the generalised- k_T measure:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R^2 = \Delta \eta^2 + \Delta \phi^2$$

• Different choices available:

$$p = -1$$
 Anti- k_T : Tags hard partons

p=0 Cambridge/Aachen (C/A) : Angular ordering

• A different choice:

$$p = 0.5 \Rightarrow d_{ij} \sim p_{t,i} \frac{\Delta R_{ij}^2}{R^2} \sim p_{t,i} \theta^2 \sim \frac{1}{\tau_{\rm form}}$$

Sequential algorithms: minimise distance between pairs

• Use the generalised-k_T measure:

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R^2 = \Delta \eta^2 + \Delta \phi^2$$

• Different choices available:

$$p = -1$$
 Anti- k_T : Tags hard partons

p=0 Cambridge/Aachen (C/A) : Angular ordering

• A different choice:

$$p = 0.5 \ \Rightarrow \ d_{ij} \sim p_{t,i} \frac{\Delta R_{ij}^2}{R^2} \sim p_{t,i} \theta^2 \sim \frac{1}{\tau_{\rm form}}$$

Clusters jets according to splitting formation time!

This is the τ algorithm

- Consider the jet formation time $(1^{st} splitting)$:
 - Harder fragmentation means longer τ .
 - Medium sample biased towards larger times.

0.18 0.16 (1/N dN/drog (1/10 0.06 0.04 0.02 0<u></u>6

- Consider the jet formation time $(1^{st} splitting)$:
 - Harder fragmentation means longer τ .
 - Medium sample biased towards larger times.
- We can select two jet populations:
 - "Early" jets : $\tau < 1$ fm/c (strongly modified)
 - "Late" jets : $\tau > 3$ fm/c (weakly modified)

0.16 1/N 0.06 0.04 0.02

- Consider the jet formation time (1st splitting):
 - Harder fragmentation means longer τ .
 - Medium sample biased towards larger times.
- We can select two jet populations:
 - "Early" jets : $\tau < 1$ fm/c (strongly modified)
 - "Late" jets : $\tau > 3$ fm/c (weakly modified)

• $R_{AA} \approx 1$ (almost no suppression)

$$R_{\rm AA}(p_t) = \frac{1/N_{\rm evt}^{\rm AA} \ {\rm d}N_{\rm jets}^{\rm AA}/{\rm d}p_t}{1/N_{\rm evt}^{\rm pp} \ {\rm d}N_{\rm jets}^{\rm pp}/{\rm d}p_t}$$

- Consider the jet formation time (1st splitting):
 - Harder fragmentation means longer τ .
 - Medium sample biased towards larger times.
- We can select two jet populations:
 - "Early" jets : $\tau < 1$ fm/c (strongly modified)
 - "Late" jets : $\tau > 3$ fm/c (weakly modified)

• $R_{AA} \approx 1$ (almost no suppression)

A jet quenching classifier: Important step towards a tomographic analysis of the QGP!

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

R^{leading} jet AA

Next, consider the parton cascade

The building blocks

Next, consider the parton cascade

[On-going work...]

The gluon emission spectrum:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

[On-going work...]

The gluon emission spectrum:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

Emission kernel : During the gluon formation

[On-going work...]

The gluon emission spectrum:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

- **Emission kernel : During the gluon formation**
- **Broadening factor: After gluon emission**

[On-going work...]

The gluon emission spectrum:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

- **Emission kernel : During the gluon formation**
- **Broadening factor: After gluon emission**
- **Assumptions:**
 - Time independent scattering potentials
 - No momentum broadening for the quark (eikonal limit)

[On-going work...]

The gluon emission spectrum:

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

- **Emission kernel : During the gluon formation**
- **Broadening factor: After gluon emission**
- **Assumptions:**
 - Time independent scattering potentials
 - No momentum broadening for the quark (eikonal limit)

Lifting these restrictions is a crucial step in improving our theoretical description of in-medium cascades

[On-going work...]

Summary

- Heavy ion collisions are the perfect laboratory to study the Quark-Gluon Plasma.
 - The QGP is a hot, dense state of matter exhibiting collective behaviour.
 - Jets are <u>multi-scale objects</u> encoding the time-evolution of the QGP.

b study the Quark-Gluon Plasma.

Summary

- Heavy ion collisions are the perfect laboratory to study the Quark-Gluon Plasma.
 - The QGP is a hot, dense state of matter exhibiting collective behaviour.
 - Jets are <u>multi-scale objects</u> encoding the time-evolution of the QGP.
- By carefully clustering jets, we can estimate their formation times!
 - This is a <u>quenching classifier</u> an important step towards QGP tomography!

Summary

- Heavy ion collisions are the perfect laboratory to study the Quark-Gluon Plasma.
 - The QGP is a hot, dense state of matter exhibiting collective behaviour.
 - Jets are <u>multi-scale objects</u> encoding the time-evolution of the QGP.
- By carefully clustering jets, we can estimate their formation times!
 - This is a <u>quenching classifier</u> an important step towards QGP tomography!
- The theoretical description of in-medium parton cascades must be extended:
 - To time-dependent media.
 - Beyond the soft limit.

Jet-Shower Correlation

C/A: Unclustering vs Parton Shower, 1st Emission

Diagonal: True Correlation Vertical Band: Emissions outside jet cone

τ: Unclustering vs Parton Shower, 1st Emission

Jet-Shower Correlation

τ: Unclustering vs Parton Shower, 1st Emission

Jet-Shower Correlation - Groomed jets [Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

C/A: Unclustering vs Parton Shower, 1st Emission

Jet grooming improves the correlation considerably!

τ: Unclustering vs Parton Shower, 1st Emission

τ algorithm: Estimating τ_{form}

• Correlation between parton shower and unclustering:

$$\Delta \tau_{\rm form} = \tau_{\rm form}^{\rm Parton \ Shower} - \tau_{\rm form}^{\rm Unclustering}$$

τ algorithm: Estimating τ_{form}

• Correlation between parton shower and unclustering:

Characterise it by the median and quartiles

$$\Delta \tau_{\rm form} = \tau_{\rm form}^{\rm Parton \ Shower} - \tau_{\rm form}^{\rm Unclustering}$$

τ algorithm: Estimating τ_{form}

Characterise it by the median and quartiles

τ algorithm: Estimating τ_{form}

Characterise it by the median and quartiles

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

An unbiased estimator of formation time!

$\Delta \tau_{form}$: Vacuum vs Medium samples

[Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

14

Dyson-Schwinger equations

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} \ 2\mathrm{Re} \int_0^\infty \mathrm{d}t' \int_0^{t'} \mathrm{d}t \int_{\boldsymbol{q},\boldsymbol{p}} \boldsymbol{p} \cdot \boldsymbol{q} \ \mathcal{K}(t',\boldsymbol{q};t,\boldsymbol{p}) \ \mathcal{P}$$

- Emission kernel (complicates numerical treatment) $\mathcal{K}(t', \boldsymbol{q}; t, \boldsymbol{p}) = \int_{\boldsymbol{x}, \boldsymbol{y}} e^{-i(\boldsymbol{y} \cdot \boldsymbol{q} - \boldsymbol{x} \cdot \boldsymbol{p})} \int_{\boldsymbol{r}(t) = \boldsymbol{x}}^{\boldsymbol{r}(t') = \boldsymbol{y}} \mathcal{D}\boldsymbol{r}(t) \exp\left\{\int_{t}^{t'} \mathrm{d}s \left(\frac{i\omega}{2}\dot{\boldsymbol{r}}^2 - \frac{1}{2}n(s)\sigma(\boldsymbol{r})\right)\right\}$
- Broadening factor

$$\mathcal{P}(t'', \boldsymbol{k}; t, \boldsymbol{q}) = \int_{\boldsymbol{z}} e^{-i\boldsymbol{z}\cdot(\boldsymbol{q}-\boldsymbol{p})} \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \mathrm{d}s \, n(s)\boldsymbol{\sigma}(\boldsymbol{r})\right\}$$

• Evaluation can be simplified by using Dyson-Schwinger type equations:

$$\mathcal{K}(t', \boldsymbol{q}; t, \boldsymbol{p}) = (2\pi)^2 \delta^{(2)}(\boldsymbol{q} - \boldsymbol{p}) e^{-i\frac{\boldsymbol{p}^2}{2\omega}(t'-t)} - \frac{1}{2} \int_t^{t'} \mathrm{d}s \, n(s) \int_{\boldsymbol{k'}} \sigma(\boldsymbol{q} - \boldsymbol{k'}) \sigma(\boldsymbol{q} - \boldsymbol{k'})$$
$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) = (2\pi)^2 \delta^{(2)}(\boldsymbol{k} - \boldsymbol{q}) - \frac{1}{2} \int_{t'}^{t''} \mathrm{d}s \, n(s) \int_{\boldsymbol{k'}} \sigma(\boldsymbol{k'} - \boldsymbol{q}) \mathcal{P}(t'', \boldsymbol{k}; s, \boldsymbol{k'})$$

[Andrés, Apolinário, Dominguez :: JHEP 2020, 114 (2020)]