Implementation of a portable PET scanner for proton therapy beam quality assessment

Ana Catarina Monteiro Magalhães

Advisors: Ana Luísa Monteiro Silva Pedro Manuel Mendes Correia João Filipe Calapez de Albuquerque Veloso

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Penetretion depth in tissue (cm)

Motivation

LACK EFFECTIVE SOLUTIONS/TOOLS FOR BEAM QUALITY ASSURANCE												
HIGHLY CH	ALLENGING											
Provide a fast and high-	Portable and											

Provide a fast and high quality image Portable and economical solution

Capable of being integrated smoothly into clinical environment

SOLUTION:

Benchtop **portable** and **high-performance** PET prototype (based on **EasyPET.3D** system) for 3D quality assessment of the beam delivery.

- *In vivo* dosimetry
- MRI
- Prompt Gamma detectors
- PET

PET

EasyPET.3D System

Patented Technology

Real-time high quality *in-vivo* images of mice

Workplan

			Year 1													Year 2												Year 3													Year 4												
No.	Task Denomination	1	2	1.0	3	4	5	6	7	5	3	9	10 :	11	12	13	14	15	5 10	6 1	7 1	8 1	19	20	21	22	23	24	25	26	27	28	3 29	30	31	L 3	2 3	3 34	4 3	5 3	5 3	7 3	8 3	39 4	0	41	42	43	44	45	46	47	48
1	Monte Carlo Simulations																																																				
2	Study of Materials and Methods																																																				
3	High performance Electronics and Hardware Integration																																																				
4	On situ Prototype Testing at Particle Therapy Center																																																				
5	Results Dissemination and Thesis Preparation																																																				
															М1													M2	2											N	3					r	M4		M5	5			

M1: Simulation framework ready, evaluation of the first results using figures of merit.

M2: Identification of limitations of current technology and future upgrades.

M3: Evaluation of new hardware solutions in laboratory and integration in a prototype.

M4: Final prototype.

M5: Final prototype evaluation in real context at PSI Proton Therapy Center.

Conclusion

The purpose of the present project is to **study the feasibility** of using the cost-effective **EasyPET** technology and phantoms for **quality assurance** of proton beam delivery.

Scanning method produces high-quality image

Portability and cost-effectiveness

Less prone to high flux saturation

Acknowledgements

• Research Grant PRT/BD/153499/2021 – ProtoTera.

Implementation of a portable PET scanner for proton therapy beam quality assessment

Thank you for your attention!

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

